Enhanced gauge symmetry and suppressed cosmological constant in heterotic interpolating models

will talk about the series of work done with Sota Nakajima

arXiv: 1905.10745, PTEP INkjm1 ←

arXiv: 2003.1121, NPB INkjm 2

arXiv: 2101.10619, PLB INkjm 3

I-Koga-Nkjm in preparation

Introduction

- Q: How can string theory provide a chance to interrelate the unification of forces and the prob. of cosmological const?
- no SUSY in multi TeV scale according to the LHC experiment
- even in 10D, under modular inv.,

#(theories with SUSY) < #(theories without SUSY)

- Heterotic $E_8 \times E_8$ call M₁

- Heterotic SO(32) Heterotic $SO(16) \times E_8$...
- Type IIB Type 0B Heterotic $SO(16) \times SO(16)$ Type IIA Type 0A Heterotic $E_7^2 \times SU(2)^2$ Type I Heterotic SO(32) Heterotic $SO(24) \times SO(8)$

call M₂ today

• possible A: interpolation by a radius ($a = \sqrt{\alpha'}/R$) or in general radii of M₁ and M₂ upon compactification

'86: HI-Taylor

choices:

= tachyonic ones should be allowed in SUSY restoring region cf. Faraggi '19, Faraggi, Matyas, Percival '19

- warning: consider all marginal deformations of the world sheet action
 - full set of Wilson lines should be turned on Narain-Sarmadi-Witten
 - generically spoil the nonabelian gauge group extrema
 ⇔ points of sym. enhancement & the stable 9D perturbative vacuum can be determined

formula for one-loop cosm. const in SUSY res. region:

$$\Lambda^{(D)} = \xi(n_F - n_B)a^D + O(e^{-1/a})$$
 H.I.-Taylor ('86)
$$\mathsf{M_1} \ 0 \longleftrightarrow a \qquad \mathsf{M_2} \qquad \mathsf{cf Abel-Dienes-Mavroudi}$$

 n_B , n_F ; # of massless bosons & fermions in D dim.

- $n_B=n_F$ models (by now more than several existing) enjoy exponential suppression of $\Lambda^{(D)}$ e.g. Kounnas-Partouche, Abel-Stewart ...
- In this setup, mass splitting due to broken SUSY is $lpha' M_s^2 = a^2$.

 e.g. a pprox 0.01 interesting possibility

More on the exponential suppression I-T, INkjm2 app.

The integrand of the τ_2 integration involves

$$(*) = \tau_2^{\#} (\Lambda_{0,0} - \Lambda_{1/2,0}) e^{-m\pi\tau_2}$$

SUSY restoring factor generic level from \prod (characters)

- apply the Jacobi imaginary transf. $(*) = (\mathrm{const})\tau_2^{\#'}\sum^{\infty} e^{-\frac{1}{4\tau_2}(2n-1)^2\pi\tilde{a}^2 m\pi\tau_2}$
 - i) $m \neq 0$: the sum bdd at least by $\frac{e^{-\pi \tilde{a}\sqrt{m}}}{1-e^{-2\pi \tilde{a}\sqrt{m}}}$ & can integrate over $[1, \infty]$
 - ii) m=0: term by term integ. over $[1,\infty]$ and resum to get $\zeta(10)$ ⇒ the first (dominant) term up to exp. accuracy
- contribution from $\tau_2 < 1$, exp. suppressed.

Contents

- I) Introduction
 - Heterotic strings and a few basics
 - Interpolating models (d=1 dim. comp.)
 - Interpolating models with WL INkjm1,2
 - V) Conclusions intermediate
 - VI) Simplest d dim. generalization (sketch) INkim3
 - VII) QFT description if any (sketch) IKN

For presentation, mostly the SO(32) case only, omitting the E_8xE_8 case

II)

Idea of Heterotic strings

adopt the lightcone coordinates

Right mover: 10d superstring $\bar{X}_R^i(\tau-\sigma), \; \bar{\psi}^i(\tau-\sigma)$

Left mover: 26d bosonic string out of which

internal 16d realize rank 16 current algebra

$$X_L^i(au+\sigma),~X_L^I(au+\sigma)$$
 (or fermions)

State counting & characters

- ${
 m Tr} q^{L_0} ar q^{ar L_0}$ counts #(states) at level m as coeff. in q(ar q) expansion
- It takes the form of $\sum_{i,j} \bar{\chi}_i^{
 m Vir}(\bar{q}) X_{ij} \chi_j^{
 m Vir}(q)$ and involves spacetime &

internal SO(2n), n=4, 8 characters $ch(rep) = O_{2n}, V_{2n}, S_{2n}, C_{2n}$ expressible in terms

of the four theta constants and the Dedekind eta fn

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$$

• SO(32) hetero $Z_B^{(8)}\left(ar{V}_8-ar{S}_8
ight)\left(O_{16}O_{16}+V_{16}V_{16}+S_{16}S_{16}+C_{16}C_{16}
ight)$

 $\mathsf{E_8} \, \mathsf{x} \, \mathsf{E_8} \, \mathsf{hetero} \qquad Z_B^{(8)} (\bar{V}_8 - \bar{S}_8) (O_{16} + S_{16}) (O_{16} + S_{16})$

Boost and enhanced gauge symmetry

• Simplest example: bosonic strings on S^1

Mass formula:
$$M^2 = 4(N-1) + 2p_L^2 = 4(\tilde{N}-1) + 2p_R^2$$

$$(\divideontimes) \begin{pmatrix} p_L \\ p_R \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} na + w/a \\ na - w/a \end{pmatrix} \xrightarrow{\begin{array}{c} \textbf{boost} \\ \cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta \end{array}} \begin{pmatrix} p_L' \\ p_R' \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} n + w \\ n - w \end{pmatrix}$$

$$e^{-\eta} = a$$

$$U(1)^2 \xrightarrow{\begin{array}{c} \textbf{gauge sym.} \\ \textbf{is enhanced} \end{array}} SU(2) \times SU(2)$$

(%) forms SO(1,1) Lorentzian lattice

Narain moduli space of d-dim toroidal compactification

- the comp. ⇒ (16+d,d) even self-dual Lorentzian lattice
 - The space of marginal deformations (the moduli space) is the coset

$$(\%) \qquad \frac{SO(16+d,d)}{SO(16+d)\times SO(d)}$$

these boosts are generated by the constant background fields whose worldsheet action is

$$A_{Ii}\int d^2z\partial X_L^I\bar{\partial}X_R^i+C_{ji}\int d^2z\partial X_L^j\bar{\partial}X_R^i,$$

$$\begin{bmatrix}I=1,\cdots,16,\ i,j=10-d,\cdots,9\end{bmatrix}$$
 Narain, Sarmadi, Witten, (1986)

(X) the case d=1 is our first concern

Idea of compactification on a twisted circle

• choose \mathcal{T} : the translation by a half period

$$\mathcal{T}: X^9 \to X^9 + \pi R$$

- choose Q: the Z_2 action on the "internal" part that defines the model M_2
- Actually $Q=Q_L\bar{Q}_R$ and $\bar{Q}_R=(-)^F$, namely the sign flip by the spacetime fermion number
- adopt $\mathcal{T}Q$ as our Z $_2$ action (no fixed point) and project onto $\mathcal{T}Q=1$ e.v., namely $\frac{1+\mathcal{T}Q}{2}$
- restore modular inv. by adding the twisted sectors
- need to prepare

$$\Lambda_{\alpha,\beta} \equiv (\eta \bar{\eta})^{-1} \sum_{n \in 2(\mathbf{Z} + \alpha), \ w \in \mathbf{Z} + \beta} q^{\frac{\alpha'}{2} p_L^2} \bar{q}^{\frac{\alpha'}{2} p_R^2}$$

lpha and eta are 0 or 1/2, and lpha=0 (1/2) and eta=0 (1/2)

start over $Z_{+}^{(9)+} = (\Lambda_{0,0} + \Lambda_{1/2,0}) Z_{B}^{(7)} Z_{+}^{+},$

Dixon-Harvey '86 Blum-Dienes '97

•
$$\mathcal{T}Q: Z_{+}^{(9)+} \to Z_{-}^{(9)+} = (\Lambda_{0,0} - \Lambda_{1/2,0}) Z_{B}^{(7)} Z_{-}^{+},$$

 Z_{-}^{+} is the Q -action of Z_{+}^{+} .

•
$$S: Z_{-}^{(9)+} \to Z_{+}^{(9)-} = \left(\Lambda_{0,1/2} + \Lambda_{1/2,1/2}\right) Z_{B}^{(7)} Z_{+}^{-},$$

$$Z_{-}^{+}(-1/\tau) \equiv Z_{+}^{-}(\tau).$$

•
$$\mathcal{T}Q: Z_{+}^{(9)-} \to Z_{-}^{(9)-} = \left(\Lambda_{0,1/2} - \Lambda_{1/2,1/2}\right) Z_{B}^{(7)} Z_{-}^{-},$$

 Z_{-}^{-} is the Q -action of Z_{+}^{-} .

$$Z_{\text{int}}^{(9)} = \frac{1}{2} \left(Z_{+}^{(9)+} + Z_{-}^{(9)+} + Z_{+}^{(9)-} + Z_{-}^{(9)-} \right)$$

$$= \frac{1}{2} Z_{B}^{(7)} \left\{ \Lambda_{0,0} \left(Z_{+}^{+} + Z_{-}^{+} \right) + \Lambda_{1/2,0} \left(Z_{+}^{+} - Z_{-}^{+} \right) + \Lambda_{0,1/2} \left(Z_{+}^{-} + Z_{-}^{-} \right) + \Lambda_{1/2,1/2} \left(Z_{+}^{-} - Z_{-}^{-} \right) \right\}.$$

In $a \to \infty$ limit, $Z_{\rm int}^{(9)}$ produces model M_2 :

$$Z_{M_2} = Z_B^{(8)} \left(Z_+^+ + Z_-^+ + Z_+^- + Z_-^- \right).$$

$SO(16) \times SO(16) \leftrightarrow SUSYSO(32)$

The partition function

$$\begin{split} Z_{\mathrm{int}}^{(9)} &= Z_B^{(7)} \left\{ \Lambda_{0,0} \left[\bar{V}_8 \left(O_{16} O_{16} \right) + S_{16} S_{16} \right) - \left[\bar{S}_8 \left(V_{16} V_{16} \right) + C_{16} C_{16} \right) \right] \\ &+ \Lambda_{1/2,0} \left[\left[\bar{V}_8 \left(V_{16} V_{16} + C_{16} C_{16} \right) - \bar{S}_8 \left(O_{16} O_{16} + S_{16} S_{16} \right) \right] \\ &+ \Lambda_{0,1/2} \left[\left[\bar{O}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) - \bar{C}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) \right] \right. \\ &+ \left. \Lambda_{1/2,1/2} \left[\left[\bar{O}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) - \bar{C}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) \right] \right\} \\ &+ \left. \Lambda_{1/2,1/2} \left[\bar{O}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) - \bar{C}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) \right] \right\} \end{split}$$
 Massless vectors with
$$\begin{bmatrix} l_L^I = m^I \text{ is the momentum for } X_L^I. \end{bmatrix}$$
 Massless spinors with

•
$$n = w = m^I = 0 \times 16$$

$$\begin{cases} n = w = 0 \\ m^{I} = (\pm, \pm, (0)^{6}; (0)^{8}), (0)^{8}; \pm, \pm, (0)^{6} \end{cases}$$

$$\begin{cases} n = w = 0 \\ m^{I} = \left(\underline{\pm, (0)^{7}}; \underline{\pm, (0)^{7}}\right) \end{cases}$$

 $SO(16) \times SO(16)$ adjoint

(16, 16) of $SO(16) \times SO(16)$

$SO(16) \times SO(16) \leftrightarrow E_{\Omega} \times E_{\Omega}$

The partition function

$$\begin{split} Z_{\mathrm{int}}^{(9)} &= Z_B^{(7)} \left\{ \Lambda_{0,0} \left[\bar{V}_8 \left(O_{16} O_{16} \right) + S_{16} S_{16} \right) - \bar{S}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) \right] \\ &+ \Lambda_{1/2,0} \left[\bar{V}_8 \left(O_{16} S_{16} + S_{16} O_{16} \right) - \bar{S}_8 \left(O_{16} O_{16} + S_{16} S_{16} \right) \right] \\ &+ \Lambda_{0,1/2} \left[\bar{O}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) - \bar{C}_8 \left(V_{16} V_{16} + C_{16} C_{16} \right) \right] \\ &+ \Lambda_{1/2,1/2} \left[\bar{O}_8 \left(V_{16} V_{16} + C_{16} C_{16} \right) - \bar{C}_8 \left(V_{16} C_{16} + C_{16} V_{16} \right) \right] \right\} \\ &\text{Massless vectors with} \left[\begin{array}{c} l_L^I = m^I \text{ is the momentum for } X_L^I. \end{array} \right] \\ &\text{Massless spinors with} \end{split}$$

•
$$n = w = m^I = 0 \times 16$$

$$\begin{cases} n = w = 0 \\ m^{I} = (\pm, \pm, (0)^{6}; (0)^{8}), (0)^{8}; \pm, \pm, (0)^{6} \end{cases}$$

 $SO(16) \times SO(16)$ adjoint

 $(128,0)\oplus(0,128)$ of $SO(16) \times SO(16)$

boosting the momentum lattice

The momenta of $X_{L,R}^9$, X_L^I change as

Boost SO(17,1)

In the partition function,

 $\chi_{XY}^{(\alpha,\beta)}(a,A^I)$ $\Lambda_{\alpha,\beta}(a)X_{16}Y_{16}$ $= (\eta \bar{\eta})^{-1} \eta^{-16} \sum_{n,w} q^{p_L^2} \bar{q}^{p_R^2/2} \sum_{m^I} q^{|l_L|^2/2} \qquad (\eta \bar{\eta})^{-1} \eta^{-16} \sum_{m^I} q^{(p_L'^2 + |l_L'|^2)/2} \bar{q}^{p_R^2/2}$ $X_{16}, Y_{16} = (O_{16}, V_{16}, S_{16}, C_{16})$

The sum of m^I depends on X, Y.

Moduli space and shift symmetry

- Moduli space of 9D interpolating models is 17-dimensional: a, A^I
- Defining t_1^I and t_2 as

$$t_1^I = \frac{1}{\sqrt{2}} \frac{A^I}{a_0} = \frac{1}{\sqrt{2}} \frac{A^I}{\sqrt{1+|A|^2}a}, \quad t_2 = \frac{1}{\sqrt{2}} \frac{1}{a_0} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|A|^2}a},$$

we can find the shift symmetry:

$$\chi_{XY}^{(\alpha,\beta)}(t_1^I, t_2) = \chi_{XY}^{(\alpha,\beta)}(t_1^I + 2, t_2)$$

The fundamental region of moduli space is

$$-1 < t_1^I \le 1, \quad 0 \le t_2.$$

• Moduli t_1^I , t_2 are the parameters of the boost on the momentum lattice.

● The case of one WL INkjm 1

Sorry, here,
$$\chi_{XY}^{(\alpha,\beta)} = X^{(\alpha,\beta)}Y$$

• SUSY SO(32) —SO(16)×SO(16) interpolating model with WL Massless spectrum, at generic R, A, comes from n=w=m=0 part

$$\begin{split} Z_{\mathrm{int}}^{(9)} &= Z_{\mathrm{boson}}^{(7)} \left\{ \bar{V_8} \left(O_{16}^{(0,0)} O_{16} + S_{16}^{(0,0)} S_{16} \right) - \bar{S_8} \left(V_{16}^{(0,0)} V_{16} + C_{16}^{(0,0)} C_{16} \right) \right. \\ &+ \bar{O_8} \left(V_{16}^{(0,1/2)} C_{16} + C_{16}^{(0,1/2)} V_{16} \right) - \bar{C_8} \left(O_{16}^{(0,1/2)} S_{16} + S_{16}^{(0,1/2)} O_{16} \right) \\ &+ \bar{V_8} \left(V_{16}^{(1/2,0)} V_{16} + C_{16}^{(1/2,0)} C_{16} \right) - \bar{S_8} \left(O_{16}^{(1/2,0)} O_{16} + S_{16}^{(1/2,0)} S_{16} \right) \\ &+ \bar{O_8} \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C_8} \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \right\} \end{split}$$

massless states at generic A, R

Massless bosons:

- \bullet $g_{\mu\nu}, B_{\mu\nu}, \phi$
- gauge bosons in adjoint rep of $SO(16) \times SO(14) \times U(1) \times U(1)^2$

Massless fermions:

ullet 8 $_S\otimes ({f 16},{f 14})$

$$n_F^0 - n_B^0 = 32$$

SUSY SO(32) —SO(16)×SO(16) interpolating model with WL
 Massless spectrum ∃a few conditions under which the gauge group
 gets enhanced

$$\begin{split} Z_{\mathrm{int}}^{(9)} &= Z_{\mathrm{boson}}^{(7)} \left\{ \underline{\bar{V}_{8}} \left(O_{16}^{(0,0)} O_{16} + S_{16}^{(0,0)} S_{16} \right) - \underline{\bar{S}_{8}} \left(V_{16}^{(0,0)} V_{16} + C_{16}^{(0,0)} C_{16} \right) \right. \\ & + \bar{O}_{8} \left(V_{16}^{(0,1/2)} C_{16} + C_{16}^{(0,1/2)} V_{16} \right) - \bar{C}_{8} \left(O_{16}^{(0,1/2)} S_{16} + S_{16}^{(0,1/2)} O_{16} \right) \\ & + \bar{V}_{8} \left(V_{16}^{(1/2,0)} V_{16} + C_{16}^{(1/2,0)} C_{16} \right) - \bar{S}_{8} \left(O_{16}^{(1/2,0)} O_{16} + S_{16}^{(1/2,0)} S_{16} \right) \\ & + \bar{O}_{8} \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C}_{8} \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \right\} \end{split}$$

condition 1
$$\sqrt{2}A + \sqrt{1 + A^2}an_1 = 0, \quad n_1 \in 2\mathbb{Z}$$

new massless state ullet two $oldsymbol{8}_V\otimes(oldsymbol{1},oldsymbol{14})$ - two $oldsymbol{8}_S\otimes(oldsymbol{16},oldsymbol{1})$

$$\begin{cases} \mathsf{SO}(\mathsf{16}) \times \mathsf{SO}(\mathsf{14}) \times \mathsf{U}(\mathsf{1}) & \longrightarrow & \mathsf{SO}(\mathsf{16}) \times \mathsf{SO}(\mathsf{16}) \\ 8_S \otimes (\mathsf{16}, \mathsf{14}) & \longrightarrow & 8_S \otimes (\mathsf{16}, \mathsf{16}) \end{cases}$$

$$\longrightarrow n_F^0 - n_P^0 = 64$$

• SUSY SO(32) —SO(16) \times SO(16) interpolating model with WL

Massless spectrum ∃a few conditions under which the gauge group

gets enhanced

$$\begin{split} Z_{\mathrm{int}}^{(9)} &= Z_{\mathrm{boson}}^{(7)} \left\{ \bar{V_8} \left(O_{16}^{(0,0)} O_{16} + S_{16}^{(0,0)} S_{16} \right) - \bar{S_8} \left(V_{16}^{(0,0)} V_{16} + C_{16}^{(0,0)} C_{16} \right) \right. \\ &+ \bar{O_8} \left(V_{16}^{(0,1/2)} C_{16} + C_{16}^{(0,1/2)} V_{16} \right) - \bar{C_8} \left(O_{16}^{(0,1/2)} S_{16} + S_{16}^{(0,1/2)} O_{16} \right) \\ &+ \bar{V_8} \left(V_{16}^{(1/2,0)} V_{16} + C_{16}^{(1/2,0)} C_{16} \right) - \bar{S_8} \left(O_{16}^{(1/2,0)} O_{16} + S_{16}^{(1/2,0)} S_{16} \right) \\ &+ \bar{O_8} \left(O_{16}^{(1/2,1/2)} S_{16} + S_{16}^{(1/2,1/2)} O_{16} \right) - \bar{C_8} \left(V_{16}^{(1/2,1/2)} C_{16} + C_{16}^{(1/2,1/2)} V_{16} \right) \right\} \end{split}$$

condition 2
$$\sqrt{2}A + \sqrt{1 + A^2}an_2 = 0, \quad n_2 \in 2\mathbb{Z} + 1$$

new massless state : two $\mathbf{8}_V \otimes (\mathbf{16},\mathbf{1})$ · two $\mathbf{8}_S \otimes (\mathbf{1},\mathbf{14})$

$$\longrightarrow n_F^0 - n_B^0 = 0$$

Summary of INkjm 1

SO(32) case

Conditions	$\tilde{\tau}_1 = n_1/\sqrt{2} (n_1 \in \boldsymbol{Z})$	$\tilde{\tau}_1 = n_2/\sqrt{2} \ (n_2 \in \mathbf{Z} + 1/2)$
Gauge group	$SO(16) \times SO(16)$	$SO(14) \times SO(18)$
$N_F - N_B$	positive	zero

 $\tilde{\tau}_1 = \sqrt{2}t_1^1$

E₈ x E₈ case

Conditions	$\tilde{\tau}_1 = n_1/\sqrt{2} \ (n_1 \in 2\mathbf{Z})$	$\tilde{\tau}_1 = n_1/\sqrt{2} \ (n_1 \in 2Z + 1)$	$\tilde{\tau}_1 = n_2/\sqrt{2} \ (n_2 \in \mathbf{Z} + 1/2)$
Gauge group	$SO(16) \times SO(16)$	$SO(16) \times E_8$	$SO(16) \times SO(14) \times U(1)$
$N_F - N_B$	positive	negative	negative

- We found out $\cos(2\pi t_1)$ potential, these points giving the extrema
- need to investigate potential instability w. r. t. turning on the other Wilson lines

still in | V | Back to the full set of WL

$SO(16) \times SO(16) \leftrightarrow SUSYSO(32)$

• The partition function

case only for today

$$Z^{(9)}(t_{1}^{I}, t_{2}) = Z_{B}^{(7)} \left\{ \bar{V}_{8} \left(\chi_{OO}^{(0,0)} + \chi_{SS}^{(0,0)} \right) - \bar{S}_{8} \left(\chi_{VV}^{(0,0)} + \chi_{CC}^{(0,0)} \right) \right.$$

$$\left. + \bar{V}_{8} \left(\chi_{VV}^{(1/2,0)} + \chi_{CC}^{(1/2,0)} \right) - \bar{S}_{8} \left(\chi_{OO}^{(1/2,0)} + \chi_{SS}^{(1/2,0)} \right) \right.$$

$$\left. + \bar{O}_{8} \left(\chi_{VC}^{(0,1/2)} + \chi_{CV}^{(0,1/2)} \right) - \bar{C}_{8} \left(\chi_{OS}^{(0,1/2)} + \chi_{SO}^{(0,1/2)} \right) \right.$$

$$\left. + \bar{O}_{8} \left(\chi_{OS}^{(1/2,1/2)} + \chi_{SO}^{(1/2,1/2)} \right) - \bar{C}_{8} \left(\chi_{VC}^{(1/2,1/2)} + \chi_{CV}^{(1/2,1/2)} \right) \right\}$$

Massless vectors with $n = w = m^I = 0 \times 16$

The gauge symmetry is $U(1)^{16}$ and there are no massless fermions at generic points of moduli space.

There are special points in moduli space, where the additional massless states appear.

> On the plane in moduli space satisfying

$$t_1^{a_1} = t_1^{a_2} = \dots = t_1^{a_p} = x, \quad 1 \le a_i \le 8, \ 2 \le p \le 8$$

The gauge symmetry is enhanced:

$$U(1)^{p-1} \subset U(1)^{16} \longrightarrow SU(p)$$

> On the plane in moduli space satisfying

$$t_1^{a_1} = t_1^{a_2} = \dots = t_1^{a_p} = x, \quad 1 \le a_i \le 8, \ 2 \le p \le 8$$

The gauge symmetry is enhanced:

$$U(1)^{p-1} \subset U(1)^{16} \longrightarrow SU(p)$$

> On the plane in moduli space satisfying

$$\begin{cases} t_1^{a_1} = t_1^{a_2} = \dots = t_1^{a_p} = x, & 1 \le a_i \le 8, \ 2 \le p \le 8 \\ t_1^{b_1} = t_1^{b_2} = \dots = t_1^{b_q} = y, & 1 \le b_j \le 8 \text{ or } 9 \le b_j \le 16, 2 \le q \le 8 \end{cases}$$

The gauge symmetry is enhanced:

$$U(1)^{p+q-2} \subset U(1)^{16} \longrightarrow SU(p) \times SU(q)$$

$$\begin{cases} t_1^{a_1} = t_1^{a_2} = \dots = t_1^{a_p} = x, & 1 \le a_i \le 8, \ 2 \le p \le 8 \\ t_1^{b_1} = t_1^{b_2} = \dots = t_1^{b_q} = y, & \underline{1 \le b_j \le 8, \ 2 \le q \le 8} \end{cases} \xrightarrow{\text{Massless vectors in } SU(p) \times SU(q) \text{ adj rep}}$$

$$\begin{cases} t_1^{a_1} = t_1^{a_2} = \dots = t_1^{a_p} = x, & 1 \le a_i \le 8, \ 2 \le p \le 8 \\ t_1^{b_1} = t_1^{b_2} = \dots = t_1^{b_q} = y, & 1 \le b_j \le 8, \ 2 \le q \le 8 \end{cases} \longrightarrow \text{Massless vectors in } SU(p) \times SU(q) \text{ adj rep}$$

$$\begin{cases} t_1^{a_1} = t_1^{a_2} = \dots = t_1^{a_p} = x, & 1 \le a_i \le 8, \ 2 \le p \le 8 \\ t_1^{b_1} = t_1^{b_2} = \dots = t_1^{b_q} = y, & \underline{9 \le b_j \le 16, \ 2 \le q \le 8} \end{cases}$$
 Massless vectors in $SU(p) \times SU(q)$ adj rep

$$\begin{cases} t_1^{a_1} = t_1^{a_2} = \dots = t_1^{a_p} = x, & 1 \le a_i \le 8, \ 2 \le p \le 8 \\ t_1^{b_1} = t_1^{b_2} = \dots = t_1^{b_q} = y, & \underline{9 \le b_j \le 16, \ 2 \le q \le 8} \end{cases}$$
 Massless vectors in $SU(p) \times SU(q)$ adj rep

> these special points of intersection are written as

$$t_1^A = \left((0)^p, \left(\frac{1}{2} \right)^q, \left(\frac{1}{4} \right)^r, \left(-\frac{1}{4} \right)^s \right), \quad t_1^{A'} = \left((0)^{p'}, \left(\frac{1}{2} \right)^{q'}, \left(\frac{1}{4} \right)^{r'}, \left(-\frac{1}{4} \right)^{s'} \right),$$

$$\left[p + q + r + s = p' + q' + r' + s' = 8, \quad I = (A, A') \right]$$

the massless spectrum is

- The gauge bosons of $SO(2P) \times SO(2Q) \times (SU(R) \times U(1))$;
- The spinors in $(\mathbf{2P}, \mathbf{2Q}, \mathbf{1}) \oplus (\mathbf{1}, \mathbf{1}, \frac{R(R-1)}{2}) \oplus (\mathbf{1}, \mathbf{1}, \frac{\overline{R(R-1)}}{2})$ of $SO(2P) \times SO(2Q) \times SU(R)$ $\begin{bmatrix} P = p + q', & Q = q + p', & R = r + s + r' + s' \end{bmatrix}$

$$n_F = n_B ext{ cases}$$
 $(P,Q) = (9,7) ext{ or } (7,9)$
 $(P,Q) = (6,6)$

The gauge symmetry is maximally enhanced at the points with p = q' = 8 or q = p' = 8, where the gauge symmetry is SO(32) and there are no massless fermions.

➤ The cosmological constant is calculated up to exponentially suppressed terms:

$$\Lambda_{ModelI}^{(9)}(t_1^I, t_2) \simeq \frac{48}{\pi^{14}} \left(\frac{a_0}{\sqrt{\alpha'}}\right)^9 8 \left\{-24 + 4 \sum_{A=1}^8 \sum_{A'=9}^{16} \cos\left(2\pi t_1^A\right) \cos\left(2\pi t_1^{A'}\right) - 4 \sum_{\substack{A,B=1\\A>B}}^8 \cos\left(2\pi t_1^A\right) \cos\left(2\pi t_1^B\right) - 4 \sum_{\substack{A',B'=9\\A'>B'}}^{16} \cos\left(2\pi t_1^{A'}\right) \cos\left(2\pi t_1^{B'}\right) \right\}$$

> the stable points in moduli space:

$$\frac{\partial \Lambda^{(9)}}{\partial t_1^I} = 0, \quad \frac{\partial^2 \Lambda^{(9)}}{\partial t_1^I \partial t_1^J} \geq 0 \quad \xrightarrow{\text{solve}} \quad t_1^I = \left((0)^8; \left(\frac{1}{2} \right)^8 \right), \left(\left(\frac{1}{2} \right)^8; (0)^8 \right)$$

stabilized when the gauge symmetry is maximally enhanced.

the $n_F = n_B$ cases are only extremal

V)

- completed the analysis in the case of d=1 in susy restoring region
- a few $n_F = n_B$ models found
- the minimum is $SO(32)/E_8 \times E_8$ gauge sym., massless bosons only
- $\frac{\partial}{\partial \alpha'} \Lambda_{\rm string} =$ dilaton tadpole is small to this order & will be made harmless

Simplest d dim. generalization: sketch & results

assumptions

INkjm3

- still in the susy restoring region
- only the X^9 direction is twisted. Otherwise just d. dim toroidal comp.

• construction

• prepare the following (16+d,d) momentum lattice

$$\Lambda \left[\Gamma; \alpha, \beta \right] \equiv (\eta \bar{\eta})^{-D} \eta^{-16} \sum_{m^{I} \in \Gamma} \sum_{w^{9} \in \mathbf{Z} + \alpha} \sum_{n_{9} \in 2(\mathbf{Z} + \beta)} \sum_{w^{i \neq 9}, n_{i \neq 9} \in \mathbf{Z}} q^{\frac{1}{2} \left(|\ell_{L}|^{2} + p_{L}^{2} \right)} \bar{q}^{\frac{1}{2} p_{R}^{2}},$$

where Γ is a 16-dimensional Euclidean lattice.

- Γ_{16} : 16 dim. even self-dual lattice
- The \mathbf{Z}_2 action is $(-1)^F Q_L \mathcal{T}^{(9)}$
- By using a shift vector $\delta^I \in \frac{1}{2}\Gamma_{16}, \, Q_L$ can be represented by $\exp{(2\pi i m \cdot \delta)}$ for $m^I \in \Gamma_{16}$. We split Γ_{16} into

$$\Gamma_{16}^{+} = \left\{ m^{I} \in \Gamma_{16} \mid \delta \cdot m \in \mathbf{Z} \right\}, \quad \Gamma_{16}^{-} = \left\{ m^{I} \in \Gamma_{16} \mid \delta \cdot m \in \mathbf{Z} + \frac{1}{2} \right\}.$$

• output:
$$Z_{int}^{(10-D)} = Z_{B}^{(8-D)} \left\{ \bar{V}_{8} \left(\Lambda \left[\Gamma_{16}^{+}; 0, 0 \right] + \Lambda \left[\Gamma_{16}^{-}; 0, 1/2 \right] \right) \right. \\ \left. - \bar{S}_{8} \left(\Lambda \left[\Gamma_{16}^{+}; 0, 1/2 \right] + \Lambda \left[\Gamma_{16}^{-}; 0, 0 \right] \right) \right. \\ \left. + \bar{O}_{8} \left(\Lambda \left[\Gamma_{16}^{+} + \delta; 1/2, 0 \right] + \Lambda \left[\Gamma_{16}^{-} + \delta; 1/2, 1/2 \right] \right) \\ \left. - \bar{C}_{8} \left(\Lambda \left[\Gamma_{16}^{+} + \delta; 1/2, 1/2 \right] + \Lambda \left[\Gamma_{16}^{-} + \delta; 1/2, 0 \right] \right) \right\}.$$

results

- gauge symmetry enhancement pattern is the same as before
- also in 1:1 correspondence with the corresponding toroidal comp.
 in M₁ superstring.

Recall

•
$$Z_{SO(32)susy} = (\bar{V}_8 - \bar{S}_8)(O_{16}O_{16} + V_{16}V_{16} + \text{massive only})$$

 ≈ 0 \uparrow \uparrow

heterotic gauged 10d sugra gravity(ino) bifund.

in evaluation $\bar{V}_8 pprox \bar{S}_8 \equiv (\overline{VS})_{\rm eval}$

•
$$Z_{\text{SO}(16)\times\text{SO}(16)\text{nosusy}} = \bar{V}_8 O_{16} O_{16} - \bar{S}_8 V_{16} V_{16} + \text{massive only}$$

 $\approx (\overline{VS})_{\text{eval}} (O_{16} O_{16} - V_{16} V_{16}) + \cdots$

- (F) gravitino & gaugino (B) bifund. vector removed
- removed

•
$$Z_{\mathrm{IT}} = \Lambda_{00} \bar{V}_8 O_{16} O_{16} - \Lambda_{00} \bar{S}_8 V_{16} V_{16} + \Lambda_{1/2,0} \bar{V}_8 V_{16} V_{16} - \Lambda_{1/2,0} \bar{S}_8 O_{16} O_{16} + \cdots$$
 $\approx (\Lambda_{00} - \Lambda_{1/2,0}) (\overline{VS})_{\mathrm{eval}} (O_{16} O_{16} - V_{16} V_{16}) + \mathrm{massive}$ They came back!! as 1st KK excitations

• Both $\Lambda_{\rm cosmo}^{1-{
m loop}}$ & gauge sym. enhancement can be understood in QFT of SO(16) \times SO(16) heterotic gauged supergravity coupled with bifund. supermultiplet where SUSY broken by the twisted circle.

Gauge symmetry enhancement in EFT

starting point : 10D SO(32) SYM + SUGRA

twisted circle
$$A_{M} = \sum_{I < J} A_{M}^{(IJ)} \frac{T^{(IJ)}}{M} = \sum_{I < J} A_{M}^{(IJ)} \frac{I}{M} = 0 \text{ or } 1/2$$

Turn on one WL:

- VEV of A_9 Wilson line $\mathcal{A}: A_9 = \mathcal{A}\underline{T^{15,16}}$ Cartan so mass formula of $A_{\mu\,(N)}^{(IJ)}: m_{N(I,J)}^2 = \left[\frac{1}{R}(N+\omega_{IJ})-\mathcal{A}\right]^2$
- condition: n = AR (1) $n \in \mathbb{Z}$ (2) $n \in \mathbb{Z} + 1/2$
 - pauge symmetry is enhanced: $SO(16) \times SO(14) \times U(1)$ $\begin{cases} (1) SO(16) \times SO(16) \\ (2) SO(18) \times SO(14) \end{cases}$

Turn on the full set of WL:
$$A_9 = \sum_{m=1}^{16} \mathcal{A}^{(m)} T^{(2m-1,2m)}$$
Cartan of $SO(32)$

- $\bullet \ \ \text{Define:} \ \ A_{\mu(N)}^{(m,n)} \equiv \left(A_{\mu(N)}^{(2m-1,2n-1)} \pm i A_{\mu(N)}^{(2m-1,2n)}\right) \pm i \left(A_{\mu(N)}^{(2m,2n-1)} \pm i A_{\mu(N)}^{(2m,2n)}\right) \\ \qquad \qquad 1 \leq m < n \leq 16$
- mass formula of $A_{\mu\;(N)}^{(m,n)}$: $m_{N(m,n)}^2 = \left[-\frac{1}{R}(N+\omega_{m,n}) \pm \mathcal{A}^{(m)} \pm \mathcal{A}^{(n)}\right]^2$
- condition of WLs: $\mathcal{A}^{(a_1)} = \cdots = \mathcal{A}^{(a_p)} \quad (1 \le a_i \le 8, \ 2 \le p \le 8)$
 - \longrightarrow gauge symmetry is enhanced : $U(1)^{p-1} \subset U(1)^{16} \to SU(p)$

Other enhancement patterns in Interpolating model also appear

Gauge symmetry enhancement can be understood in EFT