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INTERLUDE

In recent 2312.15111[hep-th] and 2312.12592[hep-th] Herderschee and
Maldacena calculated M-theory amplitudes from Matrix theory (BFSS
model) to show that this works in wider range of relevant parameters
then expected.

They had to compare the results with 11D SUGRA amplitudes,

but, not having in hand the 11D covariant super-amplitude formalism,
they restricted their ’field theory’ calculations by the case where all
scattered particles are in the same 4-plane of 11D spacetime so that 4D
spinor helicity and superamplitude formalism can be used.

This restricted the generality of their arguments and corresponding
conclusions for higher point amplitudes.

However, the manifestly Lorentz covariant 11D spinor helicity, amplitude
and superamplitude formalisms do exist [I.B. PRL2017, JHEP2018,18,19]

and probably the above problem suggests to come back to its further
development and applications.
An additional reason for this gives e.g. recent 2402.03453 [hep-th] by
Renata Kallosh.
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Great progress in amplitude calculations, including multiloop amplitudes,
reviewed in [Bern, Carrasco, Dixon, Johansson and Roiban, Fortsch.Phys. 2011],
[Benincasa, Int.J.Mod.Phys. A2014],
[Evlang and Huang, ”Scattering amplitudes...”, CUP 2015]
is related in its signiificant part to the use of twistor-like and
(super)twistor methods.

In particular, let us refer on BCFW approach first developed for tree
gluon amplitudes in [R. Britto, F. Cachazo, B. Feng and E. Witten,
PRL2005] (see also [Britto, Cachazo, Feng, NPB05])
and generalized for tree and loop superamplitudes of N = 4 SYM and
N = 8 SG in

Arkani-Hamed, Cachazo, Kaplan, JHEP 2010 [arXiv:0808.1446[hep-th]],
Brandhuber, Heslop, Travaglini, PRD 2008 [arXiv:0807.4097 [hep-th]].

The list of important papers in this direction certainly includes
Bianchi, Elvang, D. Freedman, JHEP 2008 [arXiv:0805.0757 [hep-th]],
Drummond, Henn, Korchemsky, E. Sokatchev, NPB 2010 [arXiv:0807.1095],
Drummond, Henn, Plefka, JHEP 2010 [arXiv:0902.2987 [hep-th]],

and many others... (Sorry for missed references!)
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Main elements

Main elements used in the D=4 amplitude calculations are:

spinor helicity variables (essentially four dimensional!),

on-shell superfields,

superamplitudes=superfield description of the amplitudes=multiparticle
generalization of the on-shell superfields.

In this talk

In this talk I will describe their 10D and 11D cousins,
discuss their properties,
and indicate their origin in the spinor moving frame formulation of the
superparticle models (classical and quantum).
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Higher D generalizations of spinor helicity formalism and (super)amplitudes

[Cheung and Donal O’Connell JHEP 2009] generalization to D=6.

For D=10: [Caron-Huot+ O’Connell JHEP 10]: i) D=10 spinor helicity
formalism and ii) ”Clifford superfield” description of tree D=10 SYM
superamplitudes (quite non minimal⇒ it is not easy to use it).

The spinor helicity formalism from [Caron-Huot and O’Connell JHEP
2010] was mainly used in the context of type IIB supergravity:
[Boels, O’Connell, JHEP 12, Boels PRL 12, Wang, Yin, PRD 15, R.
Kallosh 2402.03453 [hep-th]].

In this talk, based on Phys.Rev.Lett.118(2017)3, JHEP 11(2018)017,
05(2018)103, 11(2019)087 and current study, we describe the
generalization of the spinor helicity formalism, as well as on-shell
superfield description for D=11 SUGRA and D=10 SYM
superamplitudes.
Actually we have proposed - and are elaborating- two approaches:

Constrained superamplitude formalism and
almost unconstrained analytic superamplitude formalism.

These both are the subject of present talk.
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What was done in PRL 2017, JHEP, 2018, 2018, 2019

In more details:
The staring point of this work was the observation that 10D spinor
helicity variables of [Caron-Huot+O’Connell 2010] can be identified with

spinor moving frame variables [Bandos, Zheltukhin 91-95], [Bandos,
Nurmagambetov 96], ... or, equivalently, with
D=10 Lorentz harmonics [Galperin, Howe, Stelle 91, Galperin, Delduc,
Sokatchev 91]

This observation was made independently in [Uvarov CQG 2016,
arXiv:1506.01881] and used their to develop 5D spinor helicity formalism.

This allowed us
to find immediately the spinor helicity formalism for 11D amplitudes [2017],
to propose a simpler constrained superfield formalism for superamplitudes of
D=10 SYM (constrained superfields versus Clifford superfields).
and to develop the constrained superamplitude formalism for D = 11
SUGRA [2017, 2018].
To write a candidate BCFW recurrent relations for 10D and 11D
superamplitudes [2017,2018] (which are still to be understood better!).

To find an (almost unconstrained) analytic superamplitude formalism for
D = 11 SUGRA and 10D SYM [2018].

To obtain polarized scattering equation for 11D SUGRA and to relate it
with 11D ambitwistor superstring [2019].
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4D Spinor helicity formalism and BCFW

Bosonic spinors and spinor helicity formalism.

In the spinor helicity formalism for D=4 on-shell amplitudes

A(1, .., n) := A(p(1), ε(1); ...; p(n), ε(n)) = A(λ(1), λ̄(1); . . . ;λ(n), λ̄(n)) .

the (light-like) momenta pµ(i) and polarizations of the external particles
are described by the bosonic Weyl spinors λA

(i) = (λ̄Ȧ
(i))

∗. In particular,

pµ(i)σ
µ

AȦ
= 2λA(i)λ̄Ȧ(i) ⇔ pµ(i) = λ(i)σµλ̄(i), µ = 0, ..., 3

where σµ

AȦ
are relativistic Pauli matrices, A = 1, 2, Ȧ = 1, 2, and

σµ
AȦσµBḂ ≡ 2ϵAB ϵȦḂ

⇒ pµipµ
i = 0 .

Indeed, in the convenient notation

< ij >≡< λ(i)λ(j) >= ϵABλ
A
(i)λ

B
(j) , [ij] := [λ̄(i)λ̄(j)] = ϵ

ȦḂ
λ̄

Ȧ

(i)λ̄
Ḃ

(j) .

we find that, as ϵAB = −ϵBA and spinors are bosonic, < ji >= − < ij >
and [ii] = 0, so that piµpµ

i = 2 < ii > ·[ii] ≡ 0.
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4D Spinor helicity formalism and BCFW

Helicity

The amplitude should obey the helicity constraints,

ĥ(i)A(1, ..., n) = hiA(1, ..., n) , ĥ(i) :=
1
2
λ̄

Ȧ

(i)
∂

∂λ̄
Ȧ

(i)

− 1
2
λA
(i)

∂

∂λA
(i)

where hi is the helicity of the state, hi = ±1 in the case of gluons.

Thus the n-particle amplitudes are also characterized by n helicities. For
gluons these are ±1 and the amplitude carries n sign indices,

A(1, ..., n) = A−...−...+...+(1, ..., n).

It can be shown that A+...+(1, ..., n) = 0, A−+...+(1, ..., n) = 0,

so that the simplest maximal helicity violation (MHV) amplitude is
AMHV (1, ..., n) :=

A+...+−i +...+−j +...+
(1, ..., n) =

< ij >4

< 12 > ... < n1 >
δ4

(∑
i

λA(i)λ̄Ȧ(i)

)

[Parke & Taylor, PRL86] (< ij >≡< λ(i)λ(j) >= ϵABλ
A
(i)λ

B
(j)).
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4D Spinor helicity formalism and BCFW

BCFW deformations

The BCFW recursion relations

An =
∑
I,h

Âh
I

1
PI

2 Â
−h
J , where I

⋃
J = (1, ..., n)

use the on-shell amplitudes depending on two deformed spinors, say

λA
(n) 7→ λ̂A

(n) = λA
(n) + zλA

(1), λ̄Ȧ
(n) 7→

̂̄
λȦ
(n) = λ̄Ȧ

(n),

λA
(1) 7→ λ̂A

(1) = λA
(1) , λ̄Ȧ

(1) 7→
̂̄
λȦ
(1) = λ̄Ȧ

(1) − zλ̄Ȧ
(n),

which implies the deformation of 1st and n-th momenta

pa
(n) 7→ p̂a

(n)(z) = pa
(n) + zqa , pa

(1) 7→ p̂a
(1)(z) = pa

(1) − zq̄a ,

qAȦ = qaσ̃AȦ
a = λA

(1)λ̄
Ȧ
(n) ⇒ qaqa = 0 , pa

(n)qa = 0 , pa
(1)qa = 0 .

The deformed momenta are generically complex but remain light-like,

p̂a
(n) p̂(n)a = 0 , p̂a

(1) p̂(1)a = 0 .
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4D Spinor helicity formalism and BCFW

BCFW recurrent relations. Explicit form.

The BCFW recurrent relations for tree amplitudes of D=4 gluons read

A(n)(p1, p2, . . . ; pn) =
∑

h

n∑
l
A(l+1)

h (p̂1(zl); p2; . . . ; pl ; P̂Σl (zl))×

× 1
(PΣl

)2
A(n−l+1)

−h (−P̂Σl (zl), pl+1; . . . ; p̂n(zl)) ,

where h is the helicity of intermediate state with P̂Σl (zl),

Pa
Σl

= −
l∑

m=1
pa

m and P̂a
Σl
(z) = −

l∑
m=1

p̂a
m(z)

∑
l

is the sum over l and over distributions of particles among A
{(l+1)
(n−l+1)

±h .

The specific l-dependent value of the complex parameter z,

zl := Pa
Σl

PΣl a/2Pb
Σl

qb

is such that (P̂a
Σl
(zl))

2 = 0 ⇒ r.h.s. contains on-shell amplitudes.
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Superamplitudes of N = 4 SYM and N = 8 SUGRA and superBCFW

Superamplitudes and on-shell superfields for N = 4 SYM and N = 8 SUGRA

One can also collect the n-particle amplitudes of the fields of SYM
(SUGRA) in the superfield amplitude (superamplitude)

A(1; ...; n) = A(λ(1), λ̄(1), η(1); ...;λ(n), λ̄(n), η(n)) ,

depending on N = 4 (N = 8) fermionic ηq
(i) = (η̄q(i))

∗ in fundamental
rep. of SU(4) (SU(8)), q = 1, ..., 4 (q = 1, ..., 8).

This is possible because the on-shell states of the maximal SYM
(SUGRA) multiplet can be collected in an on-shell superfield

Φ(λ, λ̄, ηq) = f (+s) + ηqχq + 1
2η

qηpspq + . . .+ 1
N !
ηq

1 . . . η
qN ϵq1...qN f (−s) ,

chiral superfield on an on-shell superspace of super-helicity s = N
4 ,

ĥΦ(λ, λ̄, ηq) = sΦ(λ, λ̄, ηq) , ĥ := − 1
2λ

A ∂
∂λA + 1

2 λ̄
Ȧ ∂

∂λ̄
Ȧ + 1

2η
q ∂
∂ηq .

The N = 4 (8) superamplitudes obey n superhelicity constraints

ĥ(i)A({λ(j), λ̄(j), η
q
(j)}) = sA({λ(j), λ̄(j), η

q
(j)}) , s =

N
4
.
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Superamplitudes of N = 4 SYM and N = 8 SUGRA and superBCFW

BCFW relations for superamplitudes

In the BCFW-like recurrent relations for tree superamplitudes of N = 4
SYM and N = 8 supergravity [Brandhuber, Heslop, Travaglini, PRD
2008, Arkani-Hamed, Cachazo, Kaplan, JHEP 2010].

A(n)(k1, η1; . . . ; kn, ηn) =

=
∑

l

∫
dN ηA(l+1)

zl
(k̂1, η̂1; k2, η2; . . . ; kl , ηl ; P̂Σl (zl), η)

1
(PΣl )

2 ×

×A(n−l+1)
zl

(−P̂Σl (zl), η; kl+1, η(l+1); . . . ; kn−1, ηn−1; k̂n, η̂n) .

the deformations of the bosonic spinors

λ̂A
(n) = λA

(n) + zλA
(1),

̂̄
λȦ
(1) = λ̄Ȧ

(1) − zλ̄Ȧ
(n),

is supplenented by the deformation of fermionic ηq = (η̄q)
∗,

η̂q
(n)(z) = ηq

(n) + zηq
(1) , η̂q

(1)(z) = ηq
(1) .

Other new issues (w/r to bosonic BCFW): i)
∑

l
7→
∑

l

∫
dN η and

ii) η̂q
(n)(z) = ηq

(n) + zηq
(1) which ’mixes’ gluon and gluino amplitudes.
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame in D=11

In D=4: pµ(i)σ
µ

AȦ
= 2λA(i)λ̄Ȧ(i) ⇔ pµ(i) = λ(i)σµλ̄(i).

Similarly, the light-like ka of a massless 11D particle can be expressed by

kaΓ
a
αβ = 2ρ#v −

αq v −
βq , ρ#v−

q Γ̃av−
p = kaδqp ,

in terms of ’energy variable’ ρ# and

a set of 16 constrained bosonic 32-component spinors v −
αq ,

q, p = 1, ..., 16, α = 1, ..., 32 which can be identified with
D=11 spinor moving frame variables
[Bandos, Zheeltukhin 92, Bandos 2006-2007]
11D Lorentz harmonics [Galperin, Howe, Townsend NPB 93].

Essentially, the constraints on v −
αq are given by the above equations

supplemented by v −
αq Cαβv −

βp = 0 ,

and by the requirement that the rank of 32× 16 matrix v −
αq is = 16.
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame variables in D=11

One can show that (roughly speaking) in the theory with local

SO(1, 1)⊗ SO(9) symmetry, v −
αq obeying the above constraints

u=
a Γ

a
αβ = 2ρ#v −

αq v −
βq , v−

q Γ̃av−
p = u=

a δqp , v −
αq Cαβv −

βq = 0

(u=
a ≡ ka/ρ

#) can be considered as homogeneous coordinates on S9,
the celestial sphere of an 11D observer,

{v −
αq} = S9

(
S9 =

SO(1, 10)
[SO(1, 1)⊗ SO(9)] ⊂×K9

)

Spinor moving frame and spinor helicity formalism

One can check that, due to the above constraints the momentum ka

(= ρ#u=
a ) is light-like kaka = 0

and that v −
αq and v−α

q = −iCαβv −
βq obey the Dirac equations

kaΓ̃
a αβvβq

− = 0 ⇔ kaΓ
a
αβv−β

q = 0 .
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D=11 spinor helicity formalism and spinor moving frame

11D Spinor helicity formalism

The 11D counterpart of the 10D spinor helicity variables of Caron-Huot
and O’Connell are λαq =

√
ρ#v −

αq ;

the 11D counterpart of the polarization spinor of the fermionic field is
λα

q =
√
ρ#v−α

q = −iCαβλβq (= (λα
q )

∗).

The constraints on v −
αq can be written in terms of λα

kaΓ
a
αβ = 2λαqλβq , λq Γ̃aλp = kaδqp λCλ = 0

Then why we need ρ# and v −
αq = λαq/

√
ρ#?

The geometric and group theoretic meaning of v −
αq is much more clear.

ρ# and its canonically conjugate coordinate x= will play an important role in
the construction of on-shell superfields and superamplitudes in D=10 and 11.

In particular the D=11 counterpart of the on-shell superspace is

Σ(10|16) : {(x=, v −
αq ; θ

−
q )} ,

with bosonic sector R⊗ S9 including R = {x=} and S9 = {v −
αq}.

But where such seemingly strange spinor frame variables come from?
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D=11 spinor helicity formalism and spinor moving frame

Vector frame attached to a light-like momentum

Let us introduce a moving frame matrix or the matrix of vector Lorentz
harmonics (or light-cone harmonics) [Sokatchev 86]

u(b)
a =

(
1
2

(
u=

a + u#
a

)
, uI

a ,
1
2

(
u#

a − u=
a

))
∈ SO↑(1,D − 1) .

This obeys u(b)
a ua(c) = η(a)(c) (see [E. Sokatchev, 86,87]), i.e.

u=
a ua= = 0 ,

u#
a ua# = 0 , u=

a ua# = 2 ,

uI
aua= = 0 = uI

aua# , uI
auaJ = −δIJ

and δa
b =

1
2

u=
a ub# +

1
2

u#
a ub= − uI

aubI .

Such a frame can be attached to a light-like momentum by setting

ka = ρ#u=
a .
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D=11 spinor helicity formalism and spinor moving frame

Moving frame variables= SO(1,D − 1)/[SO(1, 1)⊗ SO(D − 2)] ⊂×KD−2 = SD−2

The splitting of u(b)
a is invariant under [SO(1, 1)× SO(D − 2)] and the

relation ka = ρ#u=
a is invariant under

HB = [SO(1, 1)× SO(D − 2)] ⊂×KD−2 where KD−2 is

u=
a 7→ u=

a ,

uI
a 7→ uI

a(i) +
1
2 u=

a(i)K
#I ,

u#
a 7→ u#

a + 1
4 u=

a (K#I)2 + uI
aK#I ,

using these symmetries as identificaation relations, we conclude that the
set of harmonic variables parametrize a compact coset

{(u=
a , u

#
a , uI

a)} = SO(1,D−1)
[SO(1,1)×SO(D−2)]⊂×KD−2

= SD−2

[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91].
This can be also written as

{u=
a } = SD−2 .
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame =
√

moving frame

Spinor moving frame =
√

moving frame is defined by conditions of
Lorentz invariance of D-dimensional Γa and also Cαβ if such exists,
i.e. is defined by a matrix V ∈ Spin(1,D − 1) which obeys

VΓbV T = u(a)
b Γ(a) , V T Γ̃(a)V = Γ̃bu(a)

b ,

VCV T = C , for D in which ∃C .

The SO(1, 1)× SO(D − 2) invariant splitting of the spinor moving frame
matrix, corresponding to u(a)

b = (u=
b , u

#
b , u

I
b), is

V (β)
α =

(
v +
αq̇ , v −

αq

)
∈ Spin(1,D − 1) ,

where q and q̇ are indices of the spinor representations of SO(D − 2),
which can be different, like s-spinor and c-spinor in D=10,

D = 10 : α = 1, ..., 16 , q̇ = 1, ..., 8 , q = 1, ..., 8 ,

or the same, as in D=11,

D = 11 : α = 1, ..., 32 , q = q̇ = 1, ..., 16 , v +
αq̇ ≡ v +

αq .
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame =
√

moving frame

The rectangular blocks of the spinor moving frame matrix, v −
αq and v +

αq̇
are called spinor moving frame variables or spinor harmonics
(spinorial Lorentz harmonics).
With the suitable representation for Γ–matrices, the constraints
VΓbV T = u(a)

b Γ(a) and V T Γ̃(a)V = Γ̃bu(a)
b can be split into

u=
a Γ

a
αβ = 2vαq

−vβq
− , v−

q Γ̃av−
p = u=

a δqp ,

, u#
a Γa

αβ = 2vαq̇
+vβq̇

+ , v+
q̇ Γ̃av+

ṗ = u#
a δq̇ṗ ,

uI
aΓ

a
αβ = 2v(α|q

−γ I
qq̇v|β)q̇

+ , v−
q Γ̃av+

ṗ = uI
aγ

I
qṗ .

These allow to state that v −
αq is a square root of u=

a

in the same sense as in D=4 one states λA ”=”
√

pa (pµσ
µ

AȦ
= 2λAλ̄Ȧ).

[In the above Eqs.: for D=11 q, p ≡ q̇, ṗ = 1, ..., 16 are spinor indices of SO(9)
and γI

qp = γI
pq is the SO(9) gamma matrix, I = 1, ..., 9, while

for D=10 γI
pq̇ =: γ̃I

q̇p are Klebsh-Gordan coefficients of SO(8), q, p = 1, ..., 8 are
s-spinor (8s) indices, q̇, ṗ = 1, ..., 8 are c-spinor (8c) indices and I=1,.., 8].
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D=11 spinor helicity formalism and spinor moving frame

D=10 vs D=11 spinor helicity formalism

The D=10 spinor helicity variables of Caron-Huot and O’Connell is

λαq =
√
ρ#v −

αq

carrying 8s index, while the polarization spinor is

λα
q̇ =

√
ρ#v−α

q̇

which carries 8c spinor index of SO(8).

It is constructed from the elements of the inverse spinor frame matrix

V α
(β) =

(
v+α

q

v−α
q̇

)
∈ Spin(1,D − 1) .

In contrast to 11D, where the polarization vector actually coincides with
the spinor helicity variable

λα
q =

√
ρ#v−α

q = −iCαβλβq .
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=10 SYM in spinor frame form of spinor helicity formalism

Thus the general solution of the massless Dirac (Weyl) equation

D = 10 : χα = v−α
q̇ ψq̇ , q̇ = 1, ..., 8 ,

is characterized by a fermionic SO(8) c-spinor ψq̇ .

The polarization vector of the vector field can be identified with uI
a so that

the on-shell field strength of the (D=10) gauge field

D = 10 : Fab = k[aub]
I w I , a = 0, 1, ..., 9 , I = 1, ..., 8

is characterized by an SO(8) vector w I .

The on-shell d.o.f.’s of SYM↔ w I = w I(ρ#, v −
αq ), ψq̇ = ψq̇(ρ

#, v −
αq ) or,

making Fourier transform w/r to ρ#, w I(x=, v−
q ) and ψq(x=, v−

q ).

Supersymmetry acts on these 9d fields by

δϵψq̇ = ϵ−qγ I
qq̇ w I , δϵw I = 2iϵ−qγ I

qq̇∂=ψq̇ ,

where ϵ−q = ϵαv −
αq .
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=11 SUGRA in spinor frame/spinor helicity formalism

The linearized on-shell field strength of 3-form gauge field

D = 11 : Fabcd = k[aub
Iuc

Jud ]
K ΦIJK , a = 0, 1, ..., 10, I = 1, ..., 9 ,

is expressed in terms of antisymmetric SO(9) tensor ΦIJK (= AIJK ).

Its superpartners, γ–traceless ΨIq and symmetric and traceless hIJ ,
which can be used to write the general solutions of the linearized
equations for 11D graviton and gravitino fields,

D = 11 : ψα
ab = k[auI

b]v
−α
q ΨIq , γ I

qpΨIp = 0 ,

hab = uI
(auJ

b)hIJ , hII = 0

(Rab
cd = k[au I

b]k
[cud ]JhIJ ).

These fields will appear as independent components of a constrained
on-shell superfield.
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On-shell superspace

The constrained on-shell superfields of 10D SYM and 11D SUGRA
are functions on the on-shell superspaces (with N = 4 and N = 8)

Σ((D−1)|2N ) = {x=, v −
αq , θ

−
q } , α = 1, ..., 4N , q = 1, ..., 2N ,

or on their ’fully momentum’ versions Σ̃((D−1)|2N ) = {ρ#, v −
αq , θ

−
q } with

bosonic bodies R1
+ × S(D−2).

SUSY acts on the coordinates of Σ((D−1)|2N )

δϵx= = 2iθ−q ϵαv −
αq , δϵθ

−
q = ϵαv −

αq , δϵv −
αq = 0 .

⇒ Σ((D−1)|2N ) can be considered as an invariant subsuperspace of
Lorentz harmonic superspace Σ(2(D−2)|4N ) = {Xµ,Θα; v −

αq , v +
αq̇}:

x= = X au=
a , θ−q = Θαv −

αq .

On-shell superfields can be treated as special Lorentz harmonic
superfields depending on x= = X au=

a , θ−q = Θαv −
αq and v −

αq only,
which obey some equations making them (one-to-one related with the)
solutions of the superfield equations of 10D SYM and 11D SUGRA.
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On-shell superfield description of D=10 SYM

The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield Ψq̇ obeying

D+
q Ψq̇ = γ I

qq̇ V I , D+
q =

∂

∂θ−q
+ 2iθ−q

∂

∂x=
.

The consistency of this eq. requires

D+
q V I = 2iγ I

qq̇∂=Ψq̇ , q = 1, ..., 8 , q̇ = 1, .., 8 , I = 1, .., 8

⇒ there are no other independent components in the constrained
on-shell superfield Ψq̇(x=, θ−q , vαq

−), but ψq̇ = ψq̇ |0 and w I = V I |0.

Indeed,

Ψq̇(x=, v−
q ; θ−q ) = ψq̇(x=, v−

q ) + θ−q γ
I
qq̇ w I(x=) +

+
4∑

k=1

(−i)k (2k−1)!!
(2k)!! (2k)! (θ−γIk−1Ik θ−) . . . (θ−γI1I2θ−) (γI1I2 . . . γIk−1Ik )q̇ṗ(∂=)

kψṗ +

+
3∑

k=1

(−i)k (2k)!!
(2k+1)!! (2k+1)! (θ

−γ̃I1I2θ−) . . . (θ−γ̃Ik−1Ik θ−)(γ̃I1I2 . . . γ̃Ik−1Ik γ̃Iθ−)q̇(∂=)
k w I .
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On-shell superfield description of D=10 SYM

The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield Ψq̇ obeying

D+
q Ψq̇ = γ I

qq̇ V I , D+
q =

∂

∂θ−q
+ 2iθ−q

∂

∂x=
.

The consistency of this eq. requires

D+
q V I = 2iγ I

qq̇∂=Ψq̇ , q = 1, ..., 8 , q̇ = 1, .., 8 , I = 1, .., 8

⇒ there are no other independent components in the constrained
on-shell superfield Ψq̇(x=, θ−q , vαq

−), but ψq̇ = ψq̇ |0 and w I = V I |0.

Indeed,

Ψq̇(x=, v−
q ; θ−q ) = ψq̇(x=, v−

q ) + θ−q γ
I
qq̇ w I(x=) +

+
4∑

k=1

(−i)k (2k−1)!!
(2k)!! (2k)! (θ−γIk−1Ik θ−) . . . (θ−γI1I2θ−) (γI1I2 . . . γIk−1Ik )q̇ṗ(∂=)

kψṗ +

+
3∑

k=1

(−i)k (2k)!!
(2k+1)!! (2k+1)! (θ

−γ̃I1I2θ−) . . . (θ−γ̃Ik−1Ik θ−)(γ̃I1I2 . . . γ̃Ik−1Ik γ̃Iθ−)q̇(∂=)
k w I .
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On-shell superfields of 11D SUGRA

In [A. Galperin, P. Howe, P. Townsend NPB1993] the linearized 11D
supergravity was described by a bosonic superfield
ΦIJK = Φ[IJK ](x=, θ−q , vαq

−) which obeys

D+
q Φ

IJK = 3iγ[IJ
qpΨ

K ]
p , γ I

qpΨ
I
p = 0 ,

{
I, J,K = 1, ..., 9
q, p = 1, ..., 16

where γ I
qp = γ I

pq are d=9 Dirac matrices, γ IγJ + γJγ I = δIJI16×16, and

D+
q = ∂+

q + 2iθ−q ∂= ≡
∂

∂θ−q
+ 2iθ−q

∂

∂x=

obeying the d=1, N = 16 supersymmetry algebra

{D+
q ,D

+
p } = 4iδqp∂= .
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On-shell superfield equations of linearized D=11 SUGRA

The consistency of D+
q Φ

IJK = 3iγ[IJ
qpΨ

K ]
p requires, besides γ I

qpΨ
I
p = 0, that

D+
q Ψ

I
p =

1
18

(
γ IJKL

qp + 6δI[Jγ
KL]
qp

)
∂=Φ

JKL + 2∂=HIJγ
J
qp ,

with symmetric traceless SO(9) tensor superfield HIJ = H((IJ)), obeying

D+
q HIJ = iγ(I

qpΨ
J)
p , HIJ = HJI , HII = 0 .

These superfield equations (actually any of these three) can be
considered as a (part of a) counterpart of superhelicity constraint
ĥΦ = hΦ imposed on the D=4 on-shell superfield.
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On-shell superfield equations of linearized D=11 SUGRA

It is convenient to collect all the on-shell superfields in one object

ΨQ(x
=, v −

αq ; θ
−
q ) =

{
ΨIq ,Φ[IJK ] , H((IJ))

}
,

with multi-index Q taking 128(=144-16) ’fermionic’ and 128=84+44
’bosonic values’,

Q = {Iq , [IJK ] , ((IJ)) }
(gamma-tracelessness and tracelessness are implied!),
and to write all the equations for them,

D+
q Ψ

I
p =

1
3

(
γ IJKL

qp + 6δI[Jγ
KL]
qp

)
∂=Φ

JKL + 2∂=HIJγ
J
qp ,

D+
q Φ

IJK = 3iγ[IJ
qpΨ

K ]
p , D+

q HIJ = iγ(I
qpΨ

J)
p ,

in the unique form

D+
q ΨQ = ∆Q qPΨP .
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Fourier transform of the linearized 11D SUGRA equations

After making Fourier transform

ΨQ(ρ
#, v −

αq ; θ
−
q ) =

1
2π

∫
dx= exp(iρ#x=)ΨQ(x

=, v −
αq ; θ

−
q )

the superfields obey the same D+
q ΨQ = ∆Q qPΨP but with ∂= 7→ −iρ#,

D+
q = ∂+

q + 2ρ#θ−q .

All ∆Q qP are now algebraic, in particular

D+
q Ψ

I
p = − iρ#

3

(
γ IJKL + 6δI[JγKL]

)
qpΦ

JKL − 2iρ#HIJγ
J
qp .

Our 11D superamplitudes should obey a certain generalization of these
equations, D+

q ΨQ = ∆Q qPΨP .
The most convenient way is to start from one of the bosonic
superamplitudes.
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10D and 11D superamplitudes

10D superamplitudes

The on-shell n-particle superamplitudes are functions on a direct product
of n copies of the on-shell superspace.

The basic superamplitude of 10D SYM

A(n)
I1...In

(k1, θ
−
1 ; ...; kn, θ

−
n ) ≡ A(n)

I1...In
(ρ#1 ; v

−
q1; θ

−
q1; ...; ρ

#
n ; v

−
qn; θ

−
qn) ,

carry n ’bosonic’ 8v indices of SO(8) and obeys

D+
qjA

(n)
I1...Ij ...In

= 2ρ#j γ
Ij

qq̇A
(n)
I1...Ij−1q̇Ij+1...In

, D+
qj =

∂

∂θ−qj

+ 2ρ#j θ
−
qj .

Selfconsistency of this equation requires equations for A(n)
I1...Ij−1q̇Ij+1...In

and for amplitudes with higher number of fermions.

It is convenient to introduce a notation with multi-indices Qj = {q̇j , Ij} and
resume all these equations in one

D+
qjAQ1...Qj ...Qj = (−)Σj∆Qj qPjAQ1...Pj ...Qj .

∆Qj qPj can be read off the equations for on-shell superfields,
∆Iqq̇ = 2ρ#j γ

Ij
qq̇ etc.
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10D and 11D superamplitudes

11D superamplitudes

The on-shell n-particle scattering amplitudes of 11D SUGRA

A(n)
Q1...Qn

(k1, θ
−
1 ; ...; kn, θ

−
n ) ≡ A(n)

Q1...Qn
(ρ#1 ; v

−
q1; θ

−
q1; ...; ρ

#
n ; v

−
qn; θ

−
qn) , ,

carry n multi-indices Ql = {Ilql , [IlJlKl ] , ((IlJl)) } and obey

γ
Il
pl ql
A...I(l)q(l)... = 0,

D+
q(l)A...Q(l)... = (−)Σl∆Ql qP(l)A...P(l)...,

∆Qj qPj can be read off eqs. for on-shell superfields,

and Σl = # of fermionic, Ijqj , indices among Q1, . . .Q(l−1), i.e.

Σl =
l−1∑
j=1

(1−(−)
ε(Qj ))

2 ,
{

ε([Ij Jj Kj ])=0=ε( ((Ij Jj )) ) ,

ε(Ij qj )=1 .

In particular, when Ql = Ilpl , this equation reads

(−)Σl D+(l)
ql
A(n)

Q1... Il pl ...Qn
= −iρ#(l)γJl qpA(n)

Q1...((Il Jl ))...Qn
−

− i
18ρ

#
(l)

(
γ

Il Jl Kl Ll
qp + 6δIl [Jlγ

Kl Ll ]
qp

)
A(n)

Q1...[Jl Kl Ll ]...Qn
.
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10D and 11D superamplitudes

BCFW-type relations for constrained 11D and 10D superamplitudes

Candidate BCFW-type relations for above described constrained
superamplitudes in D=11 and D=10 have been obtained in [PRL 2017]
and analysed in [JHEP 2018].

As they relate on-shell superamplitudes, we need to define a
deformation of our spinor helicity (spinor frame) and fermionic variables
which result in a shift of, say

k̂a
(1) = ka

(1) − zqa , k̂a
(n) = ka

(n) + zqa , z ∈ C,
qaqa = 0 , qaka

(1) = 0 , qaka
(n) = 0 .
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Generalized BCFW deformations in D=11

In D=11 and D=10 that results from

v̂ −
αq(n) = v −

αq(n) + z v −
αp(1) Mpq

√
ρ#(1)/ρ

#
(n) ,

v̂ −
αq(1) = v −

αq(1) − z Mqp v −
αp(n)

√
ρ#(n)/ρ

#
(1)

where Mqp = −2 qa (v −
q(1) Γ̃av −

p(n))
√
ρ#(1)ρ

#
(n)/(k(1)k(n)) is nilpotent

MrpMrq = 0 , MqrMpr = 0 .

The deformed v̂ −
αq(1) and v̂ −

αq(n) are complex but obey the characteristic

constraints û=
a(i)Γ

a
αβ = 2v̂ −

αq(i)
̂vβq(i)

− and v̂−
q(i)Γ̃av̂−

p(i) = û=
a(i)δqp !

The deformation of the fermionic variables reads

θ̂−p(n) = θ−p(n) + z θ−q(1) Mqp

√
ρ#(1)/ρ

#
(n) ,

θ̂−q(1) = θ−q(1) − z Mqp θ
−
p(n)

√
ρ#(n)/ρ

#
(1) .
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BCFW relations for 11D superamplitudes

11D BCFW

BCFW-type recurrent relations for tree 11D superamplitudes [PRL 2017] are

A(n)
Q1...Qn

(k1, θ
−
(1); k2, θ

−
(2); . . . ; kn, θ

−
(n)) =

=
n∑

l=2

(−)Σ(l+1)

64(ρ̂#(zl))2 D+
q(zl )

(
A(l+1)

zl Q1...Ql Jp(k̂1, θ̂
−
(1); k2, θ

−
(2); . . . ; kl , θ

−
(l); P̂l(zl), θ

−) ×

× 1
(Pl)2

←→
D +

q(zl )
A(n−l+1)

zl Jp Ql+1...Qn
(−P̂l(zl), θ

−; kl+1, θ
−
(l+1); . . . ; kn−1, θ

−
(n−1); k̂n, θ̂

−
(n))

)
θ−=0

.

where Pa
l = −

l∑
m=1

ka
m , P̂a

l (z) = −
l<n∑
m=1

k̂a
m(z) = Pa

l − zqa and

zl :=
Pa

l Pl a
2Pb

l qb
with qa obeying q2 = 0, q · k1 = 0, q · kn = 0

One can find that qa = −
√
ρ#1 ρ

#
n v−

q(1)Γ̃
aMqpv−

p(n)/32 with MMT = 0.

Actually, the bosonic arguments of the on-shell amplitudes are ρ#(i) and
v −
αq(i) from ka(i)Γ

a
αβ = 2ρ#(i)v

−
αq(i)v

−
βq(i) and v −

q(i)Γ̃
av −

p(i) = ka(i)δqp/ρ
#
(i).
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BCFW relations for 11D superamplitudes

11D BCFW

A(n)
Q1...Qn

(k1, θ
−
(1); k2, θ

−
(2); . . . ; kn, θ

−
(n)) =

=
n∑

l=2

(−)Σ(l+1)

64(ρ̂#(zl))2 D+
q(zl )

(
A(l+1)

zl Q1...Ql Jp(k̂1, θ̂
−
(1); k2, θ

−
(2); . . . ; kl , θ

−
(l); P̂l(zl), θ

−) ×

× 1
(Pl)2

←→
D +

q(zl )
A(n−l+1)

zl Jp Ql+1...Qn
(−P̂l(zl), θ

−; kl+1, θ
−
(l+1); . . . ; kn−1, θ

−
(n−1); k̂n, θ̂

−
(n))

)
θ−=0

.

Actually, the bosonic arguments of the on-shell amplitudes are ρ#(i) and
v −
αq(i) from ka(i)Γ

a
αβ = 2ρ#(i)v

−
αq(i)v

−
βq(i) and v −

q(i)Γ̃
av −

p(i) = ka(i)δqp/ρ
#
(i).

and ±P̂l
a(zl) should be also understood as v −

αqPl
(zl) and ±ρ#Pl

(zl)

P̂l
a(zl)Γaαβ = 2ρ#Pl

vαq
−
Pl

vβq
−
Pl
, P̂l

a(zl)δqp = ρ#Pl
v−

q Pl
Γ̃av−

p Pl
.

Finally, D+
q(zl )

is the covariant derivative with respect to θ−q ,
D+

q(zl )
= ∂

∂θ−q
+ 2ρ#Pl

θ−q .
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BCFW relations for 11D superamplitudes

Exotic measure in 11D BCFW

A(n)
Q1...Qn

(...) =
n∑

l=2

(...)×

×D+
q

(
A(l+1)

zl Q1...Ql Jp(...; P̂l , θ
−)

1
(Pl)2

←→
D +

qA
(n−l+1)
zl Jp Ql+1...Qn

(−P̂l , θ
−; ...)

)
θ−=0

.

The expression D+
q (Bq)|θ−=0 can be considered as Grassmann

integration with an exotic fermionic measure.
Such type of measure was used by Mario Tonin in 1990 to write a
superfield (STV-type) action for heterotic superstring in D=10.
[Tonin:1991ii] M. Tonin, “World sheet supersymmetric formulations of
Green-Schwarz superstrings,” Phys.Lett. B 266 (1991) 312.
[Tonin:1991ia] M. Tonin, “kappa symmetry as world sheet
supersymmetry in D = 10 heterotic superstring,” Int. J. Mod. Phys. A 7
(1992) 6013.
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BCFW relations for 11D superamplitudes

Issues

The further study of these candidate 10D and 11D BCFW relations
[JHEP 2018] made manifest some issues
one of which is the dependence of the calculated amplitudes on the
deformation vector qa.
Such a dependence seems to characteristic also for other approaches to
higher dimensional generalizations of BCFW in higher dimensions
[Arkani-Hamed + Kaplan 2008, Cheung 2008], even for bosonic
amplitudes (while for D=4 this is completely fixed by its characteristic
properties 0 = qapa1 = qapan = qaqa) and a propositions to make some
ad hoch choices were made.
However, in my opinion, this q-dependence should be either improved or
understood better.

Other approaches?

Let me also stress that BCFW is not a unique approach for
(super)amplitude calculations so the other methods to calculate our 10D
SYM and 11D SUGRA constrained superamplitudes can be developed.
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Analytic on-shell superfields

Let us start from constrained on-shell superfields of 10D SYM

D+
q W I = 2iγ I

qq̇Ψq̇ ⇒ D+
q Ψq̇ = γ I

qq̇ ∂=W I .

Breaking SO(8) 7→ SO(6)⊗ SO(2) ≈ SU(4)⊗ U(1), we can split the
vector representation 8v of SO(8) on 6+1+1 of SO(6),

W I = (W Ǐ ,W 7,W 8), Ǐ = 1, ..., 6 ,

and introducing

Φ =
W 7 − iW 8

2
, Φ̄ =

W 7 + iW 8

2
, Ψq = γ8

qq̇Ψq̇ ,

we find that the above equation implies

D+
q Φ =

(
δqp + i(γ7γ̃8)qp

)
Ψp =: 2P+qpΨp ,

D+
q Φ̄ = −

(
δqp − i(γ7γ̃8)qp

)
Ψp =: 2P−qpΨp .
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Analytic on-shell superfields

It is important to notice that the matrices P±
qp = 1

2

(
δqp ± i(γ7γ̃8)qp

)
,

are orthogonal projectors

P+P+ = P+ , P−P− = P− , P+P− = 0
P+ + P− = I , (P+)∗ = P− ,

and hance that D+
q Φ = 2P+qpΨp implies

P−qpD+
p Φ = 0 , P+qpD+

p Φ̄ = 0.

Furthermore, as the projectors P+ and P− are complementary and
complex conjugate, we can introduce complex 8×4 matrix wq

A and its
complex conjugate w̄qA such that

P+
qp = 2wq

Aw̄pA , P−
qp = 2w̄qAwp

A.

In terms of these rectangular blocks the above equations can be written
as chirality (analyticity) conditions

D̄+
AΦ = 0 , D+AΦ̄ = 0 , with D̄+

A = w̄pAD+
q , D+

A = wq
AD+

q .
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Analytic on-shell superfields

The construction may be made SO(8) invariant by introducing a ‘bridge’
coordinates parametrizing SO(8)/[SU(4)⊗ U(1)] coset: the SO(8)
valued matrix

U(J)
I =

(
UI

J̌ ,UI
(7),UI

(8)
)
=
(

UI
J̌ , 1

2

(
UI + ŪI

)
, 1

2i

(
UI − ŪI

))
∈ SO(8)

with its elements (internal vector harmonics) obeying

UIUI = 0 , ŪIŪI = 0 , UIŪI = 2 ,

UIUI
J̌ = 0 , ŪIUI

J̌ = 0 , UI
J̌UI

Ǩ = δJ̌Ǩ .

Then the SO(8) covariant projectors

P+
qp =

1
2

(
δqp + i(γ I γ̃J)qpU(7)

I U(8)
J

)
=

1
4
γ I γ̃J ŪIUJ ,

P−
qp =

1
2

(
δqp − i(γ I γ̃J)qpU(7)

I U(8)
J

)
=

1
4
γ I γ̃JUIŪJ

and w , w̄ are spinir internal harmonics, the ’square roots’ of U and Ū.

Similarly we can proceed with superamplitudes.
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Internal SO(D−2)
SO(D−4)⊗U(1) harmonics

Little group SO(D-2)7→ SO(D-4) tiny group

Thus there exists a possibility to construct an alternative, analytic
superfield formalism [JHEP 2018 =hep-th/1705.09550].
The price to pay is that the little group symmetry SO(D − 2)i is broken
(spontaneousely) to the ’tiny group’ SO(D − 4) (⊆ SU(N )).
An analytic superamplitude has a superfield structure very similar to its
4D cousin, but depend on another set of bosonic variables. These are:

D=10 or D=11 spinor helicity variables: densities ρ#i and v −
αqi

{v−
αqi} =

(
Spin(1,D − 1)

[SO(1, 1)⊗ Spin(D − 2)] ⊂×KD−2

)
i
,

and internal frame or internal harmonic variables

{wA
qi , w̄Aqi} =

(
Spin(D − 2)

Spin(D − 4)⊗ U(1)

)
i

[Harmonic variables, SU(2)/U(1), SU(3)/(U(1)XU(1)),... :
[Galperin, Ivanov, Kalitsin, Ogievetsky, Sokatchev=GIKOS CQG 84,84],
[Galperin, Ivanov, Ogievetsky, Sokatchev, Harmonic superspace, 2001]].
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Internal SO(D−2)
SO(D−4)⊗U(1) harmonics

SO(D−2)
SO(D−4)⊗U(1) harmonic variables

This internal frame or internal harmonic variables

{wA
qi , w̄Aqi} =

(
Spin(D − 2)

Spin(D − 4)⊗ U(1)

)
i
,

obey, besides

U/qṗ := γ I
qṗUI = 2w̄qAwA

ṗ , Ū/qṗ := γ I
qṗŪI = 2wA

q w̄ṗA .

and U/J̌
qṗ := γ I

qṗU J̌
I = iwA

q σ
J̌
ABwB

ṗ + iw̄qAσ̃
J̌ABw̄ṗB , also

w̄qBwq
A = δB

A , wq
Awq

B = 0 , w̄qAw̄qB = 0 .

This reflects that for D = 10: Spin(D − 4) = Spin(6) = SU(4),
and for D = 11: Spin(D − 4) = Spin(7) ⊂ SU(8).

In the above constraints UI , ŪI and UI
J̌ form the vector internal frame

U(J)
I =

(
UI

J̌ , 1
2

(
UI + ŪI

)
, 1

2i

(
UI − ŪI

))
∈ SO(D − 2) .
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Analytic superamplitudes from constrained superamplitudes

Analytic superamplitude of 10D SYM

We start with the basic A(n)
I1...Ij ...In

obeying

D+(j)
qj
A(n)

I1...Ij ...In
= 2ρ#j γ

Ij
qj q̇j
A(n)

I1...Ij−1q̇j Ij+1...In
:

First, we contract SO(8)i 8v indices with UI i (γ I
qṗUI i = 2w̄qAiwA

ṗi )

Ãn({ρ#(i), v
−

αq(i);wi , w̄i ; θ
−
qi }) = UI11 . . .UInn AI1...In ({ρ

#
i , v

−
αqi ; θ

−
qi }) ,

we obtain the object which obeys

D̄+(j)
A Ãn({ρ#(i), v

−
αq(i);wi , w̄i ; θ

−
qi }) = 0 ∀j = 1, ..., n ,

D̄+(j)
A = w̄qAjD

+(j)
q =

∂

∂η̄−A
j

+ 2ρ#j η
−
Aj , η−Aj = θ−qj w̄qAj = (η̄−A

j )∗ .

Our analytic 10D SYM superamplitude is related to this by

An({ρ#i , v
−

αqi ;wi , w̄i ; ηAi}) = e
−2

∑
j ρ

#
j η

−
Bj η̄

−B
j Ãn({..., w̄i ; η

−
Ai w

A
qi + η̄−A

i w̄qAi })
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Analytic superamplitudes from constrained superamplitudes

Analytic superamplitude of 11D SUGRA

The analytic superamplitudes of 11D SUGRA are constructed as

An({ρ#i , v
−

αqi ;wi , w̄i ; ηAi}) = UI11UJ11 . . .UInnUJnn ×

×e
−2

∑
j ρ

#
j η

−
Bj η̄

−B
j A(n)

(I1J1)...(Ij Jj )...(InJn)
({ρ#i , v

−
αqi ; η

−
Ai w

A
qi + η̄−A

i w̄qAi}).

from the basic 11D superamplitude A(n)
(I1J1)...(Ij Jj )...(InJn)

obeying

D+
qjA

(n)
(I1J1)...(Ij Jj )...(InJn)

= ρ#j γqp(Ij |A
(n)
(I1J1)...(Ij−1Jj−1) |Jj )p (Ij+1Jj+1)...(InJn)

Notice that, despite the similarity of the superfield structure of analytic
superamplitudes with ones of D=4 N = 4 SYM and N = 8 SUGRA

the generalization of 4D results to 10D and 11D is not straightforward

and is still to be elaborated; also some problems are to be solved.

A potentially useful tool for this is Lorentz covariant counterpart of the
light cone gauge, fixed on spinor frame variables found in [JHEP2018].

Another interesting direction is to search for BCFW-type recurrent
relations of these analytic superamplitudes.
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Discussion

One of the aims of this talk was to convince you that the D=10, 11
Lorentz harmonic approach and(or) spinor moving frame formalism
[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91, Bandos, Zheltukhin
91-95, Galperin, Howe, Stelle 93, Bandos, Nurmagambetov 96, Bandos, Sorokin,
..., Uvarov,...], which, in contrast to Newmen-Penrose diad and Penrose
twistor formalism, work(s) with highly constrained set of spinors,
is useful, besides the superembedding approach

[Bandos, Pasti, Sorokin, Tonin, Volkov 95, Bandos, Sorokin, Volkov 95,
Howe, Sezgin 96, Howe, Sezgin, West 97, Bandos, Sorokin, Tonin 97, ... ]

also in the on-shell amplitude calculations.
Of course, this approach is still at the initial stages of its development,
and was not elaborated too intensively after 2018.
Of related results I can mention that the polarized scattering equation
[Geyer, Lipstein, Mason PRL14, Geyer, Mason 2019], a kind of square
root of CHY scattering equation approach [Cachazo, He, Yuan, PRL
2014= arXiv:1307.2199], was obtained from 11D ambitwistor superstring
in this frame in [JHEP 2019]).
However, recent renewed interest to higher dimensional amplitudes
[Herderschee + Maldacena 2023, Kallosh 2024] suggests to come back
to attacking this problem.
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Outlook

Probably development of spinor moving frame based formalisms for
amplitudes and superamplitudes of type IIB supergravity, an alternative
to the existing study which used the natural complex structure of type IIB
superspace, may help to develop both these lines.
After better understanding and further elaborating the constrained and
analytic superamplitude formalism for trees, it will be natural to search
for their generalization for the case of loop (super)amplitudes.
More speculatively sounds: to search for possible generalization for
superstring superamplitudes (beyond the field theory), probably on the
basis of superembedding approach, and
? to search for the generalizations for 11D superamplitudes beyond 11D
SUGRA? (?M-theory amplitudes?)
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THE END!

THANK YOU FOR YOUR ATTENTION!
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Convenient gauge

It is convenient to introduce an auxiliary spinor frame (v −
αq , v +

αq) and
associated vector frame (u=

a , u
#
a , uI

a). Then

any of the spinor and vector frames (v −
αq(i), v

+
αq(i)) and vector frame

(u=
a(i), u

#
a(i), u

I
a(i)) ’attached’ to one of the scattered particles are related to

these by the Spin(1,D-1) Lorentz transformations

but only (D − 2) of the parameters of this Lorentz transformation, K=I
i

(≈ SD−2)), are not related to gauge symmetries which are used to define
spinor frame(s)

thus we can fix the gauge in which any spinor frame can be expressed
through the auxiliary frame by

v −
αq(i) = v −

αq +
1
2

K=I
i γ I

qpv +
αp , v +

αq(i) = v +
αq .

The frame vectors are related to the vectors of auxiliary frame by

u=
a(i) = u=

a + K=I
(i) uI

a +
1
4
(K⃗=

(i))
2u#

a ,

uI
a(i) = uI

a +
1
2

K=I
(i) u#

a , u#
a(i) = u#

a .
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Gauge fixed form of the 3 point analytic superamplitude in 10D/11D

Gauge fixed form of the 3 point analytic superamplitude in 10D SYM

AD=10 SYM
3 =

(ρ̃#1 ρ̃
#
2 ρ̃

#
3 )

2e−2i(β1+β2+β3)

⟨12] ⟨23] ⟨31]
δ4

(
q̃−

A[1] − q̃−
A[2]

ρ̃#3

)
.

where ⟨ij] := 1
4ρ

#
j (v

+α
qi v −

αpj) U/qṗi (v
−β
ṗi v −

βpj)

and q−
A[i] = w̄q̇Aiv−α

q̇i

3∑
j=1
ρ#i v −

αpjθ
−
pi is analytic supermomentum,

∂

∂η̄−B
j

q−
A[i] = 0 ∀ i, j = 1, 2, 3

and e2iβi is defined by UIi = e2iβi UJOJI
i , ŪIi = e−2iβi ŪJOJI

i , or

w̄qA i = Oqp i w̄pB eiβi U† B
A i , w A

q i = Oqp iw A
p e−iβiU A

B i ,

U A
B i ∈ SO(D − 4) ⊂ SU(N ) ,

while v −
αqi = e−αiOiqp

(
v −
αp + 1

2 K=I
i γ I

pq̇v +
αq̇

)
, Oiqp ⊂ SO(D − 2),

and q̃−
A[i] − q̃−

A[j] = eαi+iβiU B
Ai

(
q−

B[i] − v−α
Bi v̄+C

αj q−
C[j]

)
.
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Gauge fixed form of the 3 point analytic superamplitude in 10D/11D

Gauge fixed form of the 3 point analytic superamplitude of 11D SG is

AD=11 SUGRA
3 =

(ρ̃#1 ρ̃
#
2 ρ̃

#
3 )

4e−2i(β1+β2+β3)

⟨12]2 ⟨23]2 ⟨31]2
δ8

(
q̃−

A[1] − q̃−
A[2]

ρ̃#3

)

where

δ8

(
q̃−

A[1] − q̃−
A[2]

ρ̃#3

)
≡ 1

8!
ϵA1...A8

(
q̃−

A1[1]
− q̃−

A1[2]

)
. . .
(

q̃−
A8[1]
− q̃−

A8[2]

)
.
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Analytic BCFW deformations in 10D/11D

Let us introduce a complex spinor frame

v−
αA := v−

αqw̄qB, v+
αA := v+

αṗw̄ṗB , v̄−A
α := v−

αpw A
p , v̄+A

α := v+
αṗw A

ṗ .

The BCFW deformation of this spinor frame and of the fermionic
variables read

v̂ −
αA(n) = v −

αA(n) + z v −
αA(1)

√
ρ#1 /ρ

#
n , ̂̄v A−

α(n) = v̄ A−
α(n) ,

v̂ −
αA(1) = v −

αA(1) ,
̂̄v A−
α(1) = v̄ A−

α(1) − z v̄ A−
α(n)

√
ρ#n /ρ

#
1

and

η̂−A n = η−A n + z η−A 1

√
ρ#1 /ρ

#
n , η̂−A 1 = η−A 1
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