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@ Inrecent 2312.15111[hep-th] and 2312.12592[hep-th] Herderschee and
Maldacena calculated M-theory amplitudes from Matrix theory (BFSS
model) to show that this works in wider range of relevant parameters
then expected.

@ They had to compare the results with 11D SUGRA amplitudes,

@ but, not having in hand the 11D covariant super-amplitude formalism,
they restricted their ‘field theory’ calculations by the case where all
scattered particles are in the same 4-plane of 11D spacetime so that 4D
spinor helicity and superamplitude formalism can be used.

@ This restricted the generality of their arguments and corresponding
conclusions for higher point amplitudes.

@ However, the manifestly Lorentz covariant 11D spinor helicity, amplitude
and superamplitude formalisms do exist [I.B. PRL2017, JHEP2018,18,19]

@ and probably the above problem suggests to come back to its further
development and applications.

@ An additional reason for this gives e.g. recent 2402.03453 [hep-th] by
Renata Kallosh.
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@ Great progress in amplitude calculations, including multiloop amplitudes,
reviewed in [Bern, Carrasco, Dixon, Johansson and Roiban, Fortsch.Phys. 2011],
[Benincasa, Int.J.Mod.Phys. A2014],

[Evlang and Huang, "Scattering amplitudes...”, CUP 2015]
is related in its signiificant part to the use of twistor-like and
(super)twistor methods.

@ In particular, let us refer on BCFW approach first developed for tree
gluon amplitudes in [R. Britto, F. Cachazo, B. Feng and E. Witten,
PRL2005] (see also [Britto, Cachazo, Feng, NPB05])

@ and generalized for tree and loop superamplitudes of A = 4 SYM and
N =8SGin

e Arkani-Hamed, Cachazo, Kaplan, JHEP 2010 [arXiv:0808.1446[hep-th]],
e Brandhuber, Heslop, Travaglini, PRD 2008 [arXiv:0807.4097 [hep-th]].

@ The list of important papers in this direction certainly includes

e Bianchi, Elvang, D. Freedman, JHEP 2008 [arXiv:0805.0757 [hep-th]],
e Drummond, Henn, Korchemsky, E. Sokatchev, NPB 2010 [arXiv:0807.1095],
@ Drummond, Henn, Plefka, JHEP 2010 [arXiv:0902.2987 [hep-th]],

and many others... (Sorry for missed references!)
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Main elements

Main elements used in the D=4 amplitude calculations are:

@ spinor helicity variables (essentially four dimensional),
@ on-shell superfields,

@ superamplitudes=superfield description of the amplitudes=multiparticle
generalization of the on-shell superfields.




Intro
[o] Yole}

Main elements

Main elements used in the D=4 amplitude calculations are:
@ spinor helicity variables (essentially four dimensional!),
@ on-shell superfields,

@ superamplitudes=superfield description of the amplitudes=multiparticle
generalization of the on-shell superfields.

@ In this talk | will describe their 10D and 11D cousins,
@ discuss their properties,

@ and indicate their origin in the spinor moving frame formulation of the
superparticle models (classical and quantum).




Higher D generalizations of spinor helicity formalism and (super)amplitudes

@ [Cheung and Donal O’Connell JHEP 2009] generalization to D=6.

e | For D=10: | [Caron-Huot+ O’Connell JHEP 10]: i) D=10 spinor helicity

formalism and ii) "Clifford superfield” description of tree D=10 SYM
superamplitudes (quite non minimal =- it is not easy to use it).

@ The spinor helicity formalism from [Caron-Huot and O’Connell JHEP
2010] was mainly used in the context of type |IB supergravity:
[Boels, O’Connell, JHEP 12, Boels PRL 12, Wang, Yin, PRD 15, R.
Kallosh 2402.03453 [hep-th]].

@ In this talk, based on Phys.Rev.Lett.118(2017)3, JHEP 11(2018)017,
05(2018)103, 11(2019)087 and current study, we describe the
generalization of the spinor helicity formalism, as well as on-shell
superfield description\ for D=11 SUGRA and D=10 SYM \
superamplitudes.

@ Actually we have proposed - and are elaborating- two approaches:

o Constrained superamplitude formalism and
e almost unconstrained analytic superamplitude formalism.

@ These both are the subject of present talk.
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What was done in PRL 2017, JHEP, 2018, 2018, 2019
@ In more details:

@ The staring point of this work was the observation that 10D spinor
helicity variables of [Caron-Huot+O’Connell 2010] can be identified with
@ spinor moving frame variables [Bandos, Zheltukhin 91-95], [Bandos,
Nurmagambetov 96], ... or, equivalently, with
e D=10 Lorentz harmonics [Galperin, Howe, Stelle 91, Galperin, Delduc,
Sokatchev 91]
@ This observation was made independently in [Uvarov CQG 2016,
arXiv:1506.01881] and used their to develop 5D spinor helicity formalism.
@ This allowed us

e to find immediately the spinor helicity formalism for 11D amplitudes [2017],

@ to propose a simpler constrained superfield formalism for superamplitudes of
D=10 SYM (constrained superfields versus Clifford superfields).

e and to develop the constrained superamplitude formalism for D = 11
SUGRA [2017, 2018].

o To write a candidate BCFW recurrent relations for 10D and 11D
superamplitudes [2017,2018] (which are still to be understood better!).

@ To find an (almost unconstrained) analytic superamplitude formalism for
D =11 SUGRA and 10D SYM [2018].

@ To obtain polarized scattering equation for 11D SUGRA and to relate it
with 11D ambitwistor superstring [2019].
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4D Spinor helicity formalism and BCFW

Bosonic spinors and spinor helicity formalism.

@ In the spinor helicity formalism for D=4 on-shell amplitudes
.A('l 9 009 n) = .A(p(1),s(1); 000 p(n)76(n)) = .A()\(1), 5\(1); 000 g )\(n)7 5\(,7)) o

the (light-like) momenta p,,;; and polarizations of the external particles
are described by the bosonic Weyl spinors A, = (X(j))*. In particular,

Pui)Tpy =20 xS Put) = MpouApy  p=0,..,3
where a:‘A are relativistic Pauli matrices, A= 1,2, A= 1,2, and
@ Indeed, in the convenient notation
. A B .. - - A B
< >=< ApAg) >= €aBAHA() [ := iAol = €2 Ap) -

@ we find that, as ¢,, = —¢,, and spinors are bosonic, < ji >= — < ij >
and [ii] = 0, so that p;,p!" =2 < ii > -[il] = 0.
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4D Spinor helicity formalism and BCFW

@ The amplitude should obey the helicity constraints,

" " 14 0 1 )
A1, o) = WA, o) By =5 h g o5 - E/\f‘,-) Y
a/\(,') (1)

where h; is the helicity of the state, h; = £1 in the case of gluons.

@ Thus the n-particle amplitudes are also characterized by n helicities. For
gluons these are +1 and the amplitude carries n sign indices,

@ It can be shown that At~ *(1,...,n) =0, A~ "T(1,....n) =0,

@ so that the simplest maximal helicity violation (MHV) amplitude is
AMRV(4 . n) =

A+'”+7"+"'+7!’+”'+(1 n) _ < U >4 54 Z}\ i 5\
T 2> <l > — A0 7AG)
1

[Parke & Taylor, PRL86] (< ij >=< AjAg) >= eaA(A())-




4D superamplitudes
[ee] 1o}

4D Spinor helicity formalism and BCFW

BCFW deformations
@ The BCFW recursion relations

A":ZA AJ, where  I| JJ =1

use the on-shell amplitudes depending on two deformed spinors, say

R SA L 3A _3A
)\/(4n) — )\Eqn) =] )\/(4,_,) + Z)\é), )\(n) —> )\/(qn) =] )\(n),
A YA A TA . 3A _ 3A A
)\(1) P—)Aé):)\u) 9 )\(1) ’—)Aé) :)‘(1)_Z>‘(n)7

@ which implies the deformation of 1st and n-th momenta

Py = P2y (2) = Py +20° . Pl = PRy (2) = Py — 237,
A= =N ) = ¢°G=0, pga=0, piga=0

The deformed momenta are generically complex but remain light-like,

—_— —_—

pfn) P(nya = 0, p(a1)p(1)a =0.
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4D Spinor helicity formalism and BCFW

BCFW recurrent relations. Explicit form.

@ The BCFW recurrent relations for tree amplitudes of D=4 gluons read

n —~
A (p1, P2, ... pn) = ZhZ/ZA(h'+1)(@ (21); p2i - - pr; Py (21)) x

~

1 A(_n;1+1)(,[5;,(z/),p/+1; o1 Pn(21))

(Ps))?

where h is the helicity of intermediate state with PAz,(z,),

/ —~ I~
PE=-3ph and Pi(z2)=-3 pal(2)
m=1 m=1

@ > is the sum over / and over distributions of particles among A}
I

(I+1)
{(n—l+1)

@ The specific /-dependent value of the complex parameter z,

)= P& Pr,a/2P2 qb

@ is such that

(P& (2))?=0

= r.h.s. contains on-shell amplitudes.
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Superamplitudes of N” = 4 SYM and ' = 8 SUGRA and superBCFW

Superamplitudes and on-shell superfields for ' = 4 SYM and A/ = 8 SUGRA

@ One can also collect the n-particle amplitudes of the fields of SYM
(SUGRA) in the superfield amplitude (superamplitude)

A(15 1) = A A1), 71)5 -+ Ay A ()
depending on N = 4 (N = 8) fermionic 77?,) = (7qi)" in fundamental
rep. of SU(4) (SU(8)),g=1,....,4(q=1,...,8).
@ This is possible because the on-shell states of the maximal SYM
(SUGRA) multiplet can be collected in an on-shell superfield
O\ A, 17) = 49 £ nxg +30IPsog + -+ T W egan (Y

; ; o N
chiral superfield on an on-shell superspace of super-helicity s = -,

~ - - A~ =A
o\ %,n) = so A n%) |, = —dN % + 4% 2+ 10l

@ The N = 4 (8) superamplitudes obey n superhelicity constraints

by A A D) = SAHAG Aoy} s 8= T
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Superamplitudes of N” = 4 SYM and ' = 8 SUGRA and superBCFW

BCFW relations for superamplitudes

@ In the BCFW-like recurrent relations for tree superamplitudes of AV = 4
SYM and N = 8 supergravity [Brandhuber, Heslop, Travaglini, PRD
2008, Arkani-Hamed, Cachazo, Kaplan, JHEP 2010].

AP (ks ko) =

. 1
—z:/dNnA(l+1 k1,771,k2,n2,...;k/,17/;Pz,(z/),n)i) X
/

(Pg))?
><A(27 ) (—Pz,(Z/),n; Kist, ms1yi - - -3 Kn=1, in—1; Enﬂ%) .

@ the deformations of the bosonic spinors

TA _©\A A A A
Moy =M +200, A =30 - 2,
@ is supplenented by the deformation of fermionic n? = (774)*,

L@ =0l +2znd,, 02 =nf .

@ Other new issues (w/r to bosonic BCFW): Z — E [ dVn and

77 ) (z) = 77 )+ znm which 'mixes’ gluon and gluino amplitudes.
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e Spinor frame and spinor helicity formalism for 11D SUGRA and 10D SYM
@ D=11 spinor helicity formalism and spinor moving frame
@ 10DSYM and 11DSUGRA in spinor helicity formalism
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame in D=11

@ In D=4: p“(’)OAA = 2)\,4 A(/ <~ Puiy = A(,‘)O’uj\(,').
@ Similarly, the light-like k; of a massless 11D particle can be expressed by

kariﬁ = Zp#vaa Vﬁ; ) ‘ p#Vq_ I’:an_ = ka(sqp ‘,

in terms of "energy variable’ p* and

@ a set of 16 constrained bosonic 32-component spinors ,
qg,p=1,...,16, a = 1,...,32 which can be identified with

e D=11 spinor moving frame variables
[Bandos, Zheeltukhin 92, Bandos 2006-2007]
o 11D Lorentz harmonics [Galperin, Howe, Townsend NPB 93].

@ Essentially, the constraints on v,,4 are given by the above equations

supplemented by | v,qC*’v,, =0/,

@ and by the requirement that the rank of 32 x 16 matrix v, is = 16.
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame variables in D=11
@ One can show that (roughly s
SO(1,1) ® SO(9) symmetry,

peaking) in the theory with local
V.q | Obeying the above constraints

UzTes = 2p" vy Vig s Vg TaVp = Uz0qp , VyqC*? Vg =0
(U7 = ka/p™) can be considered as homogeneous coordinates on S°,
the celestial sphere of an 11D observer,

— a S0(1,10)
{Vag} =§° <Sg ~ [SO(1,1) @ SO(9)] cng>

Spinor moving frame and spinor helicity formalism
@ One can check that, due to the above constraints the momentum k,

(= p*u5) is light-like

—iC*? vy, obey the Dirac equations

@ and that v, and v, * =

kaf?*Pvge™ =0 & kal23v, 7 =0.




spinor helicity in D=10,11
00®00000

D=11 spinor helicity formalism and spinor moving frame

11D Spinor helicity formalism

@ The 11D counterpart of the 10D spinor helicity variables of Caron-Huot
and O’Connell are Aag = \/p* Vag;

@ the 11D counterpart of the polarization spinor of the fermionic field is
2§ = VPPV = —ICP Agq (= (A)")-
The constraints on v,,, can be written in terms of A\,

kal25 = 2Xaghsg,  Aqfado = kadgp  ACA =0

Then why we need p* and v,y = Aag/+/p#?

e The geometric and group theoretic meaning of v,,4 is much more clear.

e p# and its canonically conjugate coordinate x= will play an important role in
the construction of on-shell superfields and superamplitudes in D=10 and 11.

In particular the D=11 counterpart of the on-shell superspace is

R 5 {(X7, Vagi 6 )}

with bosonic sector R @ S® including R = {x~} and §° = {v.g}.
But where such seemingly strange spinor frame variables come from?
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D=11 spinor helicity formalism and spinor moving frame
Vector frame attached to a light-like momentum
@ Let us introduce a moving frame matrix or the matrix of vector Lorentz
harmonics (or light-cone harmonics) [Sokatchev 86]

o = (5 (w5 +ut). uhog (- 15)) € 8071,D-1).

) y2© = p(@() (see [E. Sokatchev, 86,87]), i.

@ This obeys ug

uu =0,
ufudt =0, u;u =2,
Ué a= 0 _ ul a# : U’ uaJ —5“
b 1 _ uo* 1 I bl
and Oa Eua + 2ua —ugu .

@ Such a frame can be attached to a light-like momentum by setting

k=ra]
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D=11 spinor helicity formalism and spinor moving frame

Moving frame variables= SO(1,D — 1)/[SO(1,1) ® SO(D — 2)] K Kp_» = sP-2

@ The splitting of u? is invariant under [SO(1,1) x SO(D — 2)] and the
relation k, = p* U is invariant under
Hg = [SO(1 5 1) X SO(D = 2)] & Kp_» where Kp_» is
uz — Uz,
uh U;(/) + %Ua:(i)K#l 5
uf = uf + Juz (K*')? + ubK?!,

@ using these symmetries as identificaation relations, we conclude that the
set of harmonic variables parametrize a compact coset

#

{(ua:7 uz SO(1,0—-1) SD72

/ _ _
Ua)} = tsorTxsob2ieke g =

[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91].

@ This can be also written as
=]
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame = /moving frame

@ Spinor moving frame = /moving frame is defined by conditions of
Lorentz invariance of D-dimensional ['? and also C., if such exists,

@ i.e. is defined by a matrix V € Spin(1, D — 1) which obeys
VoV = uPr,, V@OV =@
vevi =c,  for Din which 3C.

@ The SO(1,1) x SO(D — 2) invariant splitting of the spinor moving frame

matrix, corresponding to uf,"‘) = (up, uf, up), is

Vi) — (VJE;’ vaj,) € Spin(1,D— 1) ,

where g and g are indices of the spinor representations of SO(D — 2),
which can be different, like s-spinor and c-spinor in D=10,

D=10: a=1,..,16, g=1,..8, g=1,..,8,

or the same, as in D=11,

D=11: a=1,.,32, g=§=1,.,16, v =v..
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D=11 spinor helicity formalism and spinor moving frame

Spinor moving frame = /moving frame

@ The rectangular blocks of the spinor moving frame matrix, v, and Vojf;

are called spinor moving frame variables or spinor harmonics
(spinorial Lorentz harmonics).

@ With the suitable representation for F—matrices, the constraints
VIpVT = U@, and VTTF@V = 4@ can be split into

UzTés =2Vag Vg |, Vg TaVy = Uzdgp |,

#ra _ Lo Lo + AF #H s
) Uz Tap =2Vag Vag VaTaVy = Uz dgp
| ~a — 1 + — Iy
Ualap = 2Yalg YegiB)g > Vg TaV = Uagp -

@ These allow to state that v, is a square root of uz
in the same sense as in D=4 one states A4 "=" \/pa (p#o’;A = 2Xa);).

@ [In the above Egs.: for D=11q,p = q,p =1, ..., 16 are spinor indices of SO(9)
and v}, = ~)q is the SO(9) gamma matrix, I =1, ..., 9, while

@ for D=10 7;) 5= &3 p are Klebsh-Gordan coefficients of SO(8), q,p =1, ...,8 are
s-spinor (8s) indices, q,p = 1, ..., 8 are c-spinor (8c) indices and I=1,.., 8].
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D=11 spinor helicity formalism and spinor moving frame

D=10 vs D=11 spinor helicity formalism

@ The D=10 spinor helicity variables of Caron-Huot and O’Connell is
)\aq = p# VO‘E
carrying 8s index, while the polarization spinor is
Ag =V p* V;a

which carries 8c spinor index of SO(8).
@ It is constructed from the elements of the inverse spinor frame matrix

+o
Vief = (&h) € Spin(1,D — 1) .
q

@ In contrast to 11D, where the polarization vector actually coincides with
the spinor helicity variable

Ag = Vp#vg® = —iC* Ngq .
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=10 SYM in spinor frame form of spinor helicity formalism

@ Thus the general solution of the massless Dirac (Weyl) equation
D=10: Xazvt;o‘z/)q, g=1,....8,

is characterized by a fermionic SO(8) c-spinor .

@ The polarization vector of the vector field can be identified with v} so that
the on-shell field strength of the (D=10) gauge field

D=10: Fu=hkauy'w', a=0,1,..,9, I=1,..,8
is characterized by an SO(8) vector w'.

@ The on-shell d.o.f’s of SYM «+ w' = W/(p*, v.g), ¥q = 14(p*, Vag) OF,
making Fourier transform wir to p#, w'(x=, v5 ') and 1q(x~, vg ).

@ Supersymmetry acts on these 9d fields by

—q./ / / i —q. |
dethg =€ Tyge W', SeW' = 2ie” Iygq0-1hg,

where € =€y -
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10DSYM and 11DSUGRA in spinor helicity formalism

On shell fields of D=11 SUGRA in spinor frame/spinor helicity formalism

@ The linearized on-shell field strength of 3-form gauge field
D=11: Faeq = katts'uc’ug &,  a=0,1,..,10, I=1,...,9,

is expressed in terms of antisymmetric SO(9) tensor ®x (= Auk)-
@ Its superpartners, y—traceless W, and symmetric and traceless hy,
which can be used to write the general solutions of the linearized
equations for 11D graviton and gravitino fields,
D=11: Vo = Kalb Vg “Vig,  7pV¥p =0,
hab = u(’aug) h/J 5 hl/ =0
(Rao™ = kqaugk°u™ hy).

@ These fields will appear as independent components of a constrained
on-shell superfield.
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e Constrained “on-shell superfield” formalism for 10D SYM and 11D SUGRA
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On-shell superspace

@ The constrained on-shell superfields of 10D SYM and 11D SUGRA
@ are functions on the on-shell superspaces (with A" = 4 and A/ = 8)

PN — (3= v 2,00}, a=1,.,4N, q=1,..,2N,
@ or on their 'fully momentum’ versions £(P=D12\) — 1% v 9.} with
bosonic bodies R} x S(°~2).
@ SUSY acts on the coordinates of £(P~112V)
deX™ =200 € Vuq , delg = € Vaq , 0eVag = 0.
o = x((P=MI2N) can be considered as an invariant subsuperspace of
Lorentz harmonic superspace T(P~214N) — (xx @ v . Vot
x- = Xy, 0y = O V,q .
@ On-shell superfields can be treated as special Lorentz harmonic
superfields depending on x~ = X%u3 , 65 = ©%v,q and v,4 only,

@ which obey some equations making them (one-to-one related with the)
solutions of the superfield equations of 10D SYM and 11D SUGRA.




On-shell superfields
0®0000

On-shell superfield description of D=10 SYM

@ The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield W, obeying

DiVy =~ V',  Df=——+2i0 ~—.

@ The consistency of this eq. requires
D V' =2iy,0-¥,, q=1,..8, §=1,.,8, [=1,.8

@ = there are no other independent components in the constrained
on-shell superfield W4(x=, 05 , Vaq ™), but ¥5 = 1glo and w' = V'l.
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On-shell superfield description of D=10 SYM

@ The main on-shell superfield of D=10 SYM is [A. Galperin, P. Howe, P.
Townsend NPB1993] a fermionic c-spinor superfield W, obeying

Il 0 0
D;\Ilqzwqq 74 9 D;r = ﬁ‘i’Zleq 8X7

@ The consistency of this eq. requires
D V' =2iy,0-¥,, q=1,..8, §=1,.,8, [=1,.8

@ = there are no other independent components in the constrained
on-shell superfield W4(x=, 05 , Vaq ™), but ¥5 = 1glo and w' = V'l.

Indeed,
wq(X Vq ) 7wbq( s 7)+9c77’7<l7q WI(X:)JF
4 k
+;§1 W(gf k=1lg=Y) .. (6= ~v12o=) (v .. Ak 1/k) (0= )k Vp +
3
T e (g=5hg=) (0= qh-rho) (e . yh—1hyIg=)q (o).

k=1
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On-shell superfields of 11D SUGRA

@ In [A. Galperin, P. Howe, P. Townsend NPB1993] the linearized 11D
supergravity was described by a bosonic superfield

&K = oIMKl(x= 6. vaq™) which obeys

WK ;MK Iyl L J,K=1 ,...,9
Dy ¢ :3’7c[mwp]v YpVp =0, {q p=1,...16

where 74, = 75, are d=9 Dirac matrices, v'v’ + 77" = §"I6x16, and

. o .0
AF —
=07 +2i050- = a0+ 2i5 5 =

obeying the d=1, N = 16 supersymmetry algebra

{DF, D} } = 4idgpd- .
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On-shell superfield equations of linearized D=11 SUGRA

@ The consistency of D} &Y = 3irlYw requires, besides v/, W}, = 0, that

1
18

with symmetric traceless SO(9) tensor superfield Hiy = Hy), obeying

D+\IJ’ . ( IJKL+65I[J KL]) oK 4 25 H/J’quv

DiHy = in4pwy),  Hy=Hy, Hyi=0.

@ These superfield equations (actually any of these three) can be
considered as a (part of a) counterpart of superhelicity constraint

he = ho imposed on the D=4 on-shell superfield.
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On-shell superfield equations of linearized D=11 SUGRA

@ It is convenient to collect all the on-shell superfields in one object
Vo(X™, Vagibg ) = {Vig, Prukr» Hy } 5
with multi-index Q taking 128(=144-16) fermionic’ and 128=84+44

‘bosonic values’,
Q={lq,[UK], (W)}

(gamma-tracelessness and tracelessness are implied!),
@ and to write all the equations for them,

z
3
Dy oM = 3"’Yg/ng] ; Dy Huy = ’”quwJ)

D;\IJ;, _ ( IJKL+651[J KL]) 8:¢JKL+28:HIJ727IP’

in the unique form

DjVq = AqepVe.
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Fourier transform of the linearized 11D SUGRA equations

@ After making Fourier transform
4 1 _ g -
Va(p™, Vagq: 0g ) = o dx™ exp(ip” x™) Vo(x~, Vog: 0q )
e the superfields obey the same DJ Wq = AgqpWVp but with 0— — —ip”,

Dy = a5 +2p%05 .

@ All Agqp are now algebraic, in particular

it 5
Dywh = — 157 (K + 831K ) oKt — 2ip* i

@ Our 11D superamplitudes should obey a certain generalization of these
equations, DfWq = AggpVe.

@ The most convenient way is to start from one of the bosonic
superamplitudes.
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e Constrained superamplitudes of 11D SUGRA and 10D SYM
@ 10D and 11D superamplitudes
@ BCFW relations for 11D superamplitudes
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10D and 11D superamplitudes

10D superamplitudes

@ The on-shell n-particle superamplitudes are functions on a direct product
of n copies of the on-shell superspace.

@ The basic superamplitude of 10D SYM

A(f)./,,(knef;.-.;kn,@;) EA;?./,,(M Vot Og15 -+ P Van Oan)

carry n’bosonic’ 8v indices of SO(8) and obeys

L o, = 0 +2p#07.

DEAY | =20F Vg Al 5= ag

di—1Qliq

@ Selfconsistency of this equation requires equations for AS") Tl
1o lj—19l41 -2 dn
and for amplitudes with higher number of fermions.

@ It is convenient to introduce a notation with multi-indices Q; = {g;, /;} and
resume all these equations in one

+ (S
DyAaq,...q...q = ()7 Ag grAay...p,...q

@ Ag g, Can be read off the equations for on-shell superfields,
Ajgg = 2p7 7ligq ete.




Constrained superamplitudes
(o] Yo}

10D and 11D superamplitudes

11D superamplitudes

@ The on-shell n-particle scattering amplitudes of 11D SUGRA

Ag),_,an(k1791_?-~ kn,07) = .A n(p1 ; q1,9q1;...;p#; Vani Ogn) ,
carry n multi-indices Q = {hqi, [JiKi], ((/iJ1)) } and obey

I _
Yo A-hnap - = 05
A — )
DanA..apy... = (=) Bagpy A..pyy...

@ Aq qp, can be read off egs. for on-shell superfields,
@ and X, = # of fermionic, /;q;, indices among Q, ... Qq_1), i.e

1—(=)5@ ([ KN =0=(((h4))) +
Z,:Z;( (2) )7 {s(l,'/q,»]):lr i
=
@ In particular, when Q, = I;p;, this equation reads

px +(/ i # (n)
(=)' Dy, pran = I a0 A (ha).a T

+ hJiKiL, I[J - KiLy] (n)
7ﬁp(l) (7” ”+651[I H)‘A -[JIKL]- -
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10D and 11D superamplitudes

BCFW-type relations for constrained 11D and 10D superamplitudes

@ Candidate BCFW-type relations for above described constrained
superamplitudes in D=11 and D=10 have been obtained in [PRL 2017]
and analysed in [JHEP 2018].

@ As they relate on-shell superamplitudes, we need to define a
deformation of our spinor helicity (spinor frame) and fermionic variables
which result in a shift of, say

Ky=kiy—2q", ki =kiy+2zq", zeC,

9:9° =0, GakG) =0, Gak(ny = 0.

A
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Generalized BCFW deformations in D=11
@ In D=11 and D=10 that results from

e - #
Veatn) = Yaan) T Z Vapty Mg 1/ P(3y/ Py »
e [#  #
Vaq(1) - V —-Z qu ap(n p(n)/p(1)

where Mg, = —2¢° (v, Fav ) p(n /(kyk(m) is nilpotent

\

@ The deformed v__ wa(h) and v q(n) are complex but obey the characteristic

=0

—_ —_— —

constraints u nlas =2V, 4 Vaqn) ~ |and V;(/)rav,;(i) = uj(,)éqp !

@ The deformation of the fermionic variables reads

— _ pra
Opin) = Op(ny + 2001y Map \/ P33/ P{1y >
- _ - - # o #

Oq01y = Oqt1y = ZMap Opn) \/ Py / P -
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BCFW relations for 11D superamplitudes

BCFW-type recurrent relations for tree 11D superamplitudes [PRL 2017] are
.A(Qn) Q, (k1,97 ;k2.97 ;...;kn.ﬂ(;)) =

Z(/ 1)

7264%& (21))

1 < _ =~ _ _ -
B Do As s ..o (~PU@) 07 kit O Ko, Oy s O ))

I+1
+Zl) (A(z,+Q1) Q Jp(k1 kz 6(2 ..... k/, () P/(Z/) ) X

N (n

/ = I<n __
@ where P = — " ki, P3z)=- Y ki(z) =P} - zq® and
m=1

m=1

7= ;;;: with g? obeying ¢ =0, q- ki =0, q -k, = 0

@ One can find that g% = —/ pf’ pif vy, F*Mlgpv /32 with MM = 0.

@ Actually, the bosonic arguments of the on-shell amplitudes are p(, and

Varat oM KahTes = 200 Virgiy Vg @nd Vo) T2V,

_ #
Vo) = Ka()dap/ P(j)-
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BCFW relations for 11D superamplitudes

AG)..a (k1,49_;k2,9_;~";k”’9(_”)):

/+1 1
= Z 64( A# Dty (A8 ki, Oy e, O iy B P2, 07)

1 = I41) _ ~ =
< 7By Bt 27Jp+0,+1 o (“P2), 07 Kt 0y k,,_1,0(,,71);k,,79(n)))

)— =
@ Actually, the bosonic arguments of the on-shell amplitudes are pfﬁ and
Vo) from kayT25 = Zp#f o) Vaa( @nd Vo F Vo) = a(,-)dqp/pff).

@ and +P,(z) should be also understood as V,qp,(21) and ip,*fl(z,)

~

D2 - - a - ra,,—
PiA(2)Taas = 2Pﬁ Vagp Vap, Pi*(21)éq0 = Pﬁ, Var,T"Vp

@ Finally, D+ |s the covariant derivative with respect to 6,
+ #
DqZ/ B 69; +2pP/9 :
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BCFW relations for 11D superamplitudes

Exotic measure in 11D BCFW

n

A(c;).4.on(~-~) = Z() X

=2

I+1) s I+1)
0 (,42,01 ol Prb” (P)z‘ﬁ AT (=PLoT ,...))97:0‘

@ The expression D (Bq)|4-—o can be considered as Grassmann
integration with an exotic fermionic measure.

@ Such type of measure was used by Mario Tonin in 1990 to write a
superfield (STV-type) action for heterotic superstring in D=10.

@ [Tonin:1991ii] M. Tonin, “World sheet supersymmetric formulations of
Green-Schwarz superstrings,” Phys.Lett. B 266 (1991) 312.

@ [Tonin:1991ia] M. Tonin, “kappa symmetry as world sheet
supersymmetry in D = 10 heterotic superstring,” Int. J. Mod. Phys. A7
(1992) 6013.
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BCFW relations for 11D superamplitudes

@ The further study of these candidate 10D and 11D BCFW relations
[JHEP 2018] made manifest some issues

@ one of which is the dependence of the calculated amplitudes on the
deformation vector g°.

@ Such a dependence seems to characteristic also for other approaches to
higher dimensional generalizations of BCFW in higher dimensions
[Arkani-Hamed + Kaplan 2008, Cheung 2008], even for bosonic
amplitudes (while for D=4 this is completely fixed by its characteristic
properties 0 = g%pa1 = G°pan = G2ga) and a propositions to make some
ad hoch choices were made.

@ However, in my opinion, this g-dependence should be either improved or
understood better.

Other approaches?

@ Let me also stress that BCFW is not a unique approach for
(super)amplitude calculations so the other methods to calculate our 10D
SYM and 11D SUGRA constrained superamplitudes can be developed.
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Outline

e Analytic superamplitudes in D=10 and D=11
@ Analytic superfields from constrained on-shell superfields
o Internal 552 harmonics

@ Analytic superamplitudes from constrained superamplitudes
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Analytic on-shell superfields

@ Let us start from constrained on-shell superfields of 10D SYM
DiW'=2iy W, =  DijVg =~ 0-W'.

Breaking SO(8) — SO(6) ® SO(2) ~ SU(4) ® U(1), we can split the
vector representation 8, of SO(8) on 6+1+1 of SO(6),

W =W, W w8, T1=1,..6,

and introducing

w7 — iws W+ iwe g
b=, b= Ve=15V,,
we find that the above equation implies
Dgo = (5qp + "(’Y7’~Ya)qp) Vp =:2PigpVp ,

Dy = - (5qp - i(77’78)qp) Vp =: 2P_gpVp -
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Analytic on-shell superfields

e ltis important to notice that the matrices P = 1 (Jgp + i(7'5%)gp)
are orthogonal projectors

Prpt=pPt, PP =P, PP =0
PtypP =1, Py =P,
and hance that D & = 2P, oWV, implies
P_gpDi® =0, PiepDj®=0.

Furthermore, as the projectors Pt and P~ are complementary and
complex conjugate, we can introduce complex 8 x4 matrix w,” and its
complex conjugate wga such that

Pap = 2We" Wpa ,  Pop = 2WeaW,".

In terms of these rectangular blocks the above equations can be written
as chirality (analyticity) conditions

Di¢=0, D™®=0, with Dj=wmuDi, Dj=w"Dj.
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Analytic on-shell superfields

@ The construction may be made SO(8) invariant by introducing a ‘bridge’
coordinates parametrizing SO(8)/[SU(4) ® U(1)] coset: the SO(8)
valued matrix

U = (U7, U, U®) = (U7, 3 (U+ ), 4 (U= D)) € SO(®8)
with its elements (internal vector harmonics) obeying
uu =0, UU=0, UU=2,
uu’=o0, TU’=0, UUK=6K.
Then the SO(8) covariant projectors
Pap = 1§ (5qp + "(’YI’NYJ)qu/m U§8)) 47 'O,
Pap = 15 (5qp - i(’Y/’7J)qu/(7) U.(/ ) 47 "5 Uy Uy

and w, w are spinir internal harmonics, the ’square roots’ of U and U.

@ Similarly we can proceed with superamplitudes.
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Internal ==r=——~x— = harmonics
0 2

Little group SO(D-2)— SO(D-4) tiny group
@ Thus there exists a possibility to construct an alternative, analytic
superfield formalism [JHEP 2018 =hep-th/1705.09550].
@ The price to pay is that the little group symmetry SO(D — 2); is broken
(spontaneousely) to the 'tiny group’ SO(D — 4) (C SU(N)).
@ An analytic superamplitude has a superfield structure very similar to its
4D cousin, but depend on another set of bosonic variables. These are:

@ D=10 or D=11 spinor helicity variables: densities p;” and Vi

Spin(1,D — 1) )

{Vaar = ([30(1 1) @ Spin(D — 2)] @Ko_»
and internal frame or internal harmonic variables

_ Spin(D — 2)
{WZ;,', Wagi} = (Spin(D -4 ® U(1))f

[Harmonic variables, SU(2)/U(1), SU(3)/(U(1)XU(1)),... :
[Galperin, lvanov, Kalitsin, Ogievetsky, Sokatchev=GIKOS CQG 84,84],
[Galperin, lvanov, Ogievetsky, Sokatchev, Harmonic superspace, 2001]].




Internal
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harmonics

SO(D—2)

SO(D-e 0 harmonic variables

@ This internal frame or internal harmonic variables

o Spin(D — 2)
(W Waq} = <Spin(D -4 U(1)>

obey, besides

— A~ U =ow A U.- —~ U = 2ww.
U = vgpU1 = 2WgaWp Ugp := vapU1 = 2Wg Wpp -
and ;= wngJ iwg UABW + iWga5" B W5, also
= A A A B o
WesWq"~ = 08", Wy W =0, WgaWqs = 0 .

@ This reflects that for D = 10: Spin(D — 4) = Spin(6) = SU(4),
and for D = 11: Spin(D — 4) = Spin(7) C SU(8).

@ In the above constraints U;, U, and U/:’ form the vector internal frame

U = (U5 U+ D)), 3 (U- D)) € SOD-2).
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Analytic superamplitudes from constrained superamplitudes

Analytic superamplitude of 10D SYM

@ We start with the basic A ;, obeying

+(/) ()
D ‘A ...... 2pj Fyq/q/‘Aﬁ / 1q”+1
@ First, we contract SO(8); 8v indices with Uj; ('yqu/, = 2Wgai W; )

({p ’ aq() ; Wi, Wi eql}) U’11 ce U’n" AI1,,,/,,({p?£, Va;i; 9;}) ’

@ we obtain the object which obeys

D+ A”({p(, ’ aq(l)' Wi, V_Vlroc;}) =0 Vj = 17“'7na

o , 9 ~ o _
+ + _— Ay
DY = WDV = oA + 20,#77/1/ ; Naj = O Waaj = (7 ")
/i

@ Our analytic 10D SYM superamplitude is related to this by

—2%jpj HEPT . _ _ A-
& An({--., wi; nAiquiq—’—ni AWin})

An({p¥, Vogii Wis Wii nait) = €
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Analytic superamplitudes from constrained superamplitudes

Analytic superamplitude of 11D SUGRA
@ The analytic superamplitudes of 11D SUGRA are constructed as

An({pf v, a;,-; wi, Wi;nai}) = U1 Ugt ..o UpnUgyn X

-8B
=23 pf nB 7
e /) (n)

#oy— A Az
(/1J1)m(lij)“.(Ian)({pi Vagis NaiWai + ;" Waai})-

§>

from the basic 11D superamplitude A{} (). (In) OPEYING

.
DALY 1y = P V1A 11—0) 43P s

@ Notice that, despite the similarity of the superfield structure of analytic
superamplitudes with ones of D=4 N’ = 4 SYM and N/ = 8 SUGRA

@ the generalization of 4D results to 10D and 11D is not straightforward
@ and is still to be elaborated; also some problems are to be solved.

@ A potentially useful tool for this is Lorentz covariant counterpart of the
light cone gauge, fixed on spinor frame variables found in [JHEP2018].

@ Another interesting direction is to search for BCFW-type recurrent
relations of these analytic superamplitudes.
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@ Discussion and Outlook
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@ One of the aims of this talk was to convince you that the D=10, 11
Lorentz harmonic approach and(or) spinor moving frame formalism
[Galperin, Howe, Stelle 91, Galperin, Delduc, Sokatchev 91, Bandos, Zheltukhin
91-95, Galperin, Howe, Stelle 93, Bandos, Nurmagambetov 96, Bandos, Sorokin,
..., Uvarov,...], which, in contrast to Newmen-Penrose diad and Penrose
twistor formalism, work(s) with highly constrained set of spinors,

@ is useful, besides the superembedding approach
e [Bandos, Pasti, Sorokin, Tonin, Volkov 95, Bandos, Sorokin, Volkov 95,
Howe, Sezgin 96, Howe, Sezgin, West 97, Bandos, Sorokin, Tonin 97, ... |
also in the on-shell amplitude calculations.

@ Of course, this approach is still at the initial stages of its development,
and was not elaborated too intensively after 2018.

@ Of related results | can mention that the polarized scattering equation
[Geyer, Lipstein, Mason PRL14, Geyer, Mason 2019], a kind of square
root of CHY scattering equation approach [Cachazo, He, Yuan, PRL
2014= arXiv:1307.2199], was obtained from 11D ambitwistor superstring
in this frame in [JHEP 2019]).

@ However, recent renewed interest to higher dimensional amplitudes
[Herderschee + Maldacena 2023, Kallosh 2024] suggests to come back
to attacking this problem.
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@ Probably development of spinor moving frame based formalisms for
amplitudes and superamplitudes of type |IB supergravity, an alternative
to the existing study which used the natural complex structure of type IIB
superspace, may help to develop both these lines.

@ After better understanding and further elaborating the constrained and
analytic superamplitude formalism for trees, it will be natural to search
for their generalization for the case of loop (super)amplitudes.

@ More speculatively sounds: to search for possible generalization for
superstring superamplitudes (beyond the field theory), probably on the
basis of superembedding approach, and

@ ? to search for the generalizations for 11D superamplitudes beyond 11D
SUGRA? (?M-theory amplitudes?)

v
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THANK YOU FOR YOUR ATTENTION!
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e Additional comments and details
@ Convenient gauge with respect to auxiliary [ H; gauge symmetry

1
@ Gauge fixed form of the 3 point analytic superamplitude in 10D/11D
@ BCFW deformation for analytic 10D/11D superamplitude calculus
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Convenient gauge

It is convenient to introduce an auxmary spinor frame (V,4, V.5) and
associated vector frame (u;, ua , ua) Then
@ any of the spinor and vector frames (v__ a0y aq( ) and vector frame
(Ux(iys a(:)’ ()) ‘attached’ to one of the scattered particles are related to
these by the Spin(1,D-1) Lorentz transformations
@ but only (D — 2) of the parameters of this Lorentz transformation, K~/
(~ SD*Z)), are not related to gauge symmetries which are used to define
spinor frame(s)

@ thus we can fix the gauge in which any spinor frame can be expressed
through the auxiliary frame by

- R +
Vag(i) = Vaq T EK/' YapVap 5 Vag() = Vag -

@ The frame vectors are related to the vectors of auxiliary frame by

sy = Uz + KU+ (R5)Pul
1, -
Usiy = Us + = K5 uff i, = ug

2
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Gauge fixed form of the 3 point analytic superamplitude in 10D/11D

@ Gauge fixed form of the 3 point analytic superamplitude in 10D SYM

D=105YM _ (P1 Ps P#)z BilBr+Petha) [7;\[1] QA[z]
8 (12] (23] (31] e

where| (ij] = %Pf(‘/;ava;j) qui (V;':/BVB_pj)

@ and gy, = WéA,v(;a;p, V,p0p is @nalytic supermomentum,
#,Bq;m =0 VvV i,j=1,2,3
@ and €®”i is defined by U = €*#i U0, U; = e 25 U,0/, or
Waai = OgpiWps €71 UL T Wcﬁ = quinA e ity ,
Ug € SO(D — 4) c SUWN) ,
o while v, = & 0o (Vap + 1K "1h5 ) Op € SO(D — 2),

@ and (J;[l_] — E,;m = goitifiyy B (qg[,] — vgavzjcqg[/]).
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Gauge fixed form of the 3 point analytic superamplitude in 10D/11D

@ Gauge fixed form of the 3 point analytic superamplitude of 11D SG is

AD=11 SUGRA _ (B 5 %) e 21t Pet i) 58 Qo — Tz
(127 (23] (31]? 7y

@ where

Tap) — A 1 o Al
8 All] Al ) _ Ay.. A
é (ﬁf ) =3¢ e (QA1[1] - QA1[2]) (qAS[1] - QAS[Z]) .
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Analytic BCFW deformations in 10D/11D

@ Let us introduce a complex spinor frame
- + .t c=A L — A AL A, A
Via = VagWgs, Voa i= VapWps , Vo= oWy, Vo= VW

@ The BCFW deformation of this spinor frame and of the fermionic
variables read

-, - - S # AT A
Voany = Vaam) T Z Vanqy \ P1/Ph Vot = Va(n) »

T = “A- _ o A- = A— H# o #
Vaar) = Yaaq) Vo) = Va@y = Z Vo \/pi /P7

Man=Tan+Z a1 \[PT /P, a1 = as

and
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