SPECIAL RELATIVITY HOMEWORK – WEEK 5

Exercise 1. Consider a particle with mass m and charge q in an electromagnetic field. Recall that the Lorentz force law $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ is relativistically correct, under the true definition of force $\mathbf{F} = d\mathbf{p}/dt$, with \mathbf{p} the spatial component of $p^{\mu} = mu^{\mu}$.

Find the particle's trajectory $x^{\mu}(\tau)$, 4-velocity $u^{\mu}(\tau)$, 4-acceleration $\alpha^{\mu}(\tau)$ and its magnitude $\alpha_{\mu}\alpha^{\mu}$, in the following cases (τ is proper time):

- 1. Constant electric field $\mathbf{E} = (E, 0, 0), \mathbf{B} = 0$, initial velocity $\mathbf{v}(0) = 0$.
- 2. Constant magnetic field $\mathbf{B} = (B, 0, 0), \mathbf{E} = 0$, initial velocity $\mathbf{v}(0) = (v_{\parallel}, v_{\perp}, 0)$.

Exercise 2. A proton is the ground state of two "up" quarks and one "down" quark. Its mass is $M_p = 939 MeV$. The lowest excited state of the same quarks is the baryon called Δ^+ , whose mass is $M_{\Delta} = 1232 MeV$.

- A proton at rest gets hit by a photon, and turns into a Δ^+ . What is the minimal energy of the photon?
- Now, consider the same process in a different reference frame, where the energy of the photon is ε = 10⁻³ eV typical of the Cosmic Microwave Background. What is the minimal energy of the proton at which the Δ⁺ can be formed? This is the GZK bound on the energy of cosmic rays.