SPECIAL RELATIVITY HOMEWORK – WEEK 1

For these exercises, we live in 3d Euclidean space \mathbb{R}^3 .

Exercise 1. A general matrix A_{ij} can be decomposed as:

$$A_{ij} = a\delta_{ij} + B_{ij} + C_{ij} , \qquad (1)$$

where B_{ij} is symmetric and traceless, while C_{ij} is antisymmetric:

$$B_{ij} = B_{ji} \; ; \quad B_{ii} = 0 \; ; \quad C_{ij} = -C_{ji} \; .$$
 (2)

Find the explicit expressions for a, B_{ij} and C_{ij} .

Exercise 2. Consider a totally symmetric rank-3 tensor $A_{ijk} = A_{(ijk)}$ (make sure you understand this equation). Denote its trace as $A_i \equiv A_{ijj}$. Find an expression for the traceless part of A_{ijk} .

Exercise 3. Denote the partial derivative with respect to the coordinates x_i as $\partial_i \equiv \partial/\partial x_i$. In this notation, the Laplacian is $\nabla^2 \equiv \partial_i \partial_i$. Consider a rank-n polynomial function:

$$f(x_i) = T_{i_1 \dots i_n} x_{i_1} \dots x_{i_n} . \tag{3}$$

- 1. What is the derivative $\partial_i x_j$?
- 2. Find the Laplacian $\nabla^2 f$. What happens in the special case where $T_{i_1...i_n}$ is traceless?
- 3. Notice that in spherical coordinates (r, θ, ϕ) , the function f factorizes as $f(x_i) = g(r)h(\theta, \phi)$. Find the radial dependence g(r).
- 4. Recall that the Laplacian in spherical coordinates reads:

$$\nabla^2 f = \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \hat{\nabla}^2 f \right) , \qquad (4)$$

where $\hat{\nabla}^2$ is the Laplacian on the unit sphere (θ, ϕ) . Show that, when $T_{i_1...i_n}$ is traceless, f is an eigenfunction of $\hat{\nabla}^2$. What is the eigenvalue?