Exploring complex saddles and geometries through holography.

Heng-Yu Chen National Taiwan University

Based on the work with Yasuaki Hikida, Yusuke Taki, Takahiro Uetoko

OIST, Okinawa

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

K個→ K ヨ K K ヨ K コ ヨ → YO Q Q Y

- \triangleright When studying the path integral for quantum gravity, often we consider the complex analytic continuation of the metric, however some interesting puzzles can arise.
- A classic example comes from complexifying S^{d+1} : [Witten 2021].

$$
ds^{2} = \ell^{2} \left[\left(\frac{d\theta(u)}{du} \right)^{2} du^{2} + \cos^{2} \theta(u) d\Omega_{d}^{2} \right]
$$

- When $\theta(u)=u, \, 0\leq u\leq \pi,$ we have $\mathcal{S}^{d+1},$ however when $\theta(u) = iu$, $-\infty \le u \le +\infty$, we have Lorentzian dS_{d+1} .
- If the universe started from nothing, i.e. $\cos^2 \theta = 0$, we can have:

$$
\theta = \left(n + \frac{1}{2}\right)\pi, \quad n \in \mathbb{Z}
$$

and evolve into $\theta = iu$ as $u \rightarrow +\infty$. We thus have a family of complex geometries with initial conditions labeled by $n \in \mathbb{Z}$.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 이익(연)

- ▶ More precisely, we complexified the action $\Psi \sim \exp[S_{(n)} + i\mathcal{I}(u)],$ where real part $S_{(n)} = (n + \frac{1}{2})S$, where S is the de Sitter entropy. This implies we can increase the amplitude as $n \to \infty$.
- ▶ In principle we need to sum over all $n \in \mathbb{Z}$ when evaluating the path integral, however the proposal by Hartle-Hawking only needs $\theta(0) = \pm \frac{\pi}{2}$ or $n = 0, -1$.
- ▶ Kontsevich-Segal: For \mathcal{M}^D with complex metric g, consider a p-form $A^{(\rho)}$ with field strength $dA^{(\rho)}$ and the action with $q=p+1$:

$$
I_q = \frac{1}{2q!} \int_M d^D x \sqrt{\det g} g^{i_1 j_1} \cdots g^{i_q j_q} F_{i_1 i_2 \cdots i_q} F_{j_1 j_2 \cdots j_q}
$$

the allowable g is such that:

$$
\operatorname{Re}\left(\sqrt{\det g}g^{i_1j_1}\cdots g^{i_qj_q}F_{i_1i_2\cdots i_q}F_{j_1j_2\cdots j_q}\right)>0,\ \ 0\leq q\leq D,
$$

イロン イ団 メイミン イミン ニヨー

 2990

for all non-zero p $+1$ form $F^{(p+1)}=d{\cal A}^{(p)}.$ [Witten 2021].

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and geometries through Historic

Holography for AdS and dS spacetimes

Some ingredients for building AdS_{d+1}/CFT_d correspondence from the bottom up.

▶ Starting with the Poincarɐ̃ coordinates: (y, \vec{x}) , $y \ge 0$ of AdS_{d+1}:

$$
ds^2 = \ell_{\text{AdS}}^2 \, \frac{dy^2 + d\vec{x}^2}{y^2}
$$

.

▶ The bulk Scalar/Tensor Fields in AdS_{d+1} , $\phi^{AdS}(y, \vec{x})/\sigma_{i_1...i_s}^{AdS}(y, \vec{x})$ with mass m and spin s :

$$
\ell_{\text{AdS}}^2 m^2 = -(\Delta_+ \Delta_- + s) \,, \qquad \Delta_- = d - \Delta_+
$$

approaching AdS boundary at $y \to 0^+$, these bulk fields become:

$$
\phi^{\rm AdS}(y,\vec{x}) \sim \phi^{\rm AdS}_+(\vec{x})\, y^{\Delta_+} + \phi^{\rm AdS}_-(\vec{x})\, y^{\Delta_-}\,,
$$

$$
\sigma^{\text{AdS}}_{i_1\cdots i_s}(y,\vec{x})\sim \sigma^{\text{+},\text{AdS}}_{i_1\cdots i_s}(\vec{x})\,y^{\Delta_+-s} + \sigma^{\text{--},\text{AdS}}_{i_1\cdots i_s}(\vec{x})\,y^{\Delta_--s}
$$

Similar proposal was made for dS_{d+1}/CFT_d :

Strominger 2001, Maldacena 2002, Anninos-Hartman-Strominger 2011.

▶ Starting with the Poincar \tilde{e} coordinates: (η, \vec{x}) , $\eta \leq 0$ for dS_{d+1}:

$$
ds^2 = \ell^2 \, \frac{-d\eta^2 + d\vec{x}^2}{\eta^2}
$$

▶ The bulk Scalar/Tensor Fields in dS_{d+1} , $\phi(y, \vec{x})/\sigma_{i_1...i_s}(y, \vec{x})$ with masses:

$$
\ell^2 m^2 = \Delta_+ \Delta_- + s \,, \qquad \Delta_- = d - \Delta_+
$$

as $\eta \rightarrow 0^-$, approaching future infinity, the bulk fields become:

$$
\phi(\eta, \vec{x}) \sim \phi_+(\vec{x}) \left(-\eta\right)^{\Delta_+} + \phi_-(\vec{x}) \left(-\eta\right)^{\Delta_-}
$$

$$
\sigma_{i_1 \cdots i_s}(\eta, \vec{x}) \sim \sigma_{i_1 \cdots i_s}^+(\vec{x}) \left(-\eta\right)^{\Delta_+ - s} + \sigma_{i_1 \cdots i_s}^-(\vec{x}) \left(-\eta\right)^{\Delta_- - s}
$$

We can also choose $\eta \geq 0$, the boundary is at past infinity $\eta \rightarrow 0^+.$

 \blacktriangleright If we relate AdS_{d+1}/dS_{d+1} metrics via analytic continuation:

$$
y=-i\eta\;,\qquad \ell_{\text{AdS}}=-i\ell\,.
$$

From the boundary couplings between the bulk fields and the dual CFT operators in AdS/CFT correspondence:

$$
\ell_{\text{AdS}}^d \int d^d{\vec x}\, \phi^{\text{AdS}}_{\pm} \, \mathcal{O}^{\pm}_{\text{AdS}}\,, \quad \ell_{\text{AdS}}^d \int d^d{\vec x}\, \sigma^{\pm, \text{AdS}}_{i_1\cdots i_s}\, J^{{i_1\cdots i_s}}_{\pm, \text{AdS}}\,.
$$

 \triangleright For dS/CFT correspondence, the coupling is via the wave functional:

$$
\Psi[\psi_j^0] = \left\langle \exp\left(\ell^d \int d^d\vec{x} \psi_j^0 \mathcal{O}^j\right) \right\rangle\,.
$$

Identifying the two couplings leads us to propose:

$$
\phi_{\pm} = e^{i\frac{\pi}{2}\Delta_{\pm}}\phi_{\pm}^{\text{AdS}} \quad\Leftrightarrow\quad \mathcal{O}_{\pm} = e^{i\frac{\pi}{2}(d-\Delta_{\pm})}\,\mathcal{O}_{\pm}^{\text{AdS}}
$$

 $2Q$

where the identifications come from the asymptotic behavior.

 \triangleright While for the AdS/dS bulk tensor fields, we have the identifications:

$$
\sigma_{i_1\cdots i_s}^{\pm}(\vec{x}) = e^{i\frac{\pi}{2}\Delta_{\pm}}\sigma_{i_1\cdots i_s}^{\pm, \text{AdS}}(\vec{x}), \qquad J_{i_1\cdots i_s}^{\pm}(\vec{x}) = e^{i\frac{\pi}{2}(d-\Delta_{\pm})}\,J_{i_1\cdots i_s}^{\pm, \text{AdS}}(\vec{x})\,.
$$

after including raising/lowering of tensor indices. For spin s conserved current: $\Delta_{+} = s + d - 2$, this yields:

$$
J_{i_1 \cdots i_s}^+(\vec{x}) = e^{i\frac{\pi}{2}(2-s)} J_{i_1 \cdots i_s}^{+, \text{AdS}}(\vec{x})
$$

which implies the definition of boundary energy momentum tensor remains invariant. The asymptotic symmetry which is given by the energy momentum tensor, is preserved.

 \blacktriangleright However things become more complicated for correlation functions, as different analytic continuations can be applied to different fields as they are all space-like separated, which account for time (anti-) ordering in the in-in formalism.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 이익(연)

An Explicit Higher Spin dS_3/CFT_2 Correspondence

Starting with pure AdS_3 gravity, we consider $SL(2,\mathbb{R})^2$ Chern-Simons gauge theory:

$$
S = S_{\text{CS}}[A] - S_{\text{CS}}[\tilde{A}], \quad S_{\text{CS}}[A] = \frac{k}{4\pi} \int \text{tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)
$$

and CS level k is related to G_N and ℓ_{AdS} via:

$$
k = \frac{\ell_{\text{AdS}}}{4G_N}
$$

 \triangleright The independent gauge fields A and \hat{A} take values in each copy of $SL(2, \mathbb{R})$ algebra: $[L_m, L_n] = (m - n)L_{m+n}, m, n = 0, \pm 1$

$$
A = e^{-\rho L_0} a e^{\rho L_0} + L_0 d\rho, \quad \tilde{A} = e^{\rho L_0} \tilde{a} e^{-\rho L_0} - L_0 d\rho
$$

$$
a = a_+(x^+) dx^+, \quad \tilde{a} = \tilde{a}_-(x^-) dx^-
$$

where $\mathsf{a}_+(\mathsf{x}^+), \tilde{\mathsf{a}}_-(\mathsf{x}^-)$ are arbitrary functions of $\mathsf{x}^\pm = t \pm \phi$ with $\phi \sim \phi + 2\pi$.

 \triangleright For the AdS₃ BTZ black hole, it is given by:

$$
a_+(x^+) = L_1 - \frac{2\pi \mathcal{L}^{AdS}}{k} L_{-1} , \quad \tilde{a}_-(x^-) = -L_{-1} + \frac{2\pi \mathcal{L}^{AdS}}{k} L_1 ,
$$

$$
\rho^{AdS} x^2 = k x^2
$$

$$
\mathcal{L}_{\text{AdS}} = \frac{\ell^{\text{A}}^{T} - \ell^{\text{A}}^{T}}{32\pi G_N} = \frac{kr_{+}^{2}}{8\pi}
$$

which yield the following metric:

$$
\ell_{\text{AdS}}^{-2} ds^2 = d\rho^2 - \left(e^{\rho} - \frac{2\pi \mathcal{L}^{\text{AdS}}}{k} e^{-\rho} \right) \left(e^{\rho} - \frac{2\pi \mathcal{L}^{\text{AdS}}}{k} e^{-\rho} \right) dt^2
$$

$$
+ \left(e^{\rho} + \frac{2\pi \mathcal{L}^{\text{AdS}}}{k} e^{-\rho} \right) \left(e^{\rho} + \frac{2\pi \mathcal{L}^{\text{AdS}}}{k} e^{-\rho} \right) d\phi^2
$$

and we can recover the usual BTZ black hole by coordinate change:

$$
r = e^{\rho} + \frac{2\pi \mathcal{L}^{\text{AdS}}}{k} e^{-\rho}
$$

 $\left\{ \bigoplus_{i=1}^{n} \mathbb{P} \left[\bigoplus_{i$

 298

▶ Taking $t \to it_E$, the absence of conical singularity at the horizon r_+ demands following periodicity:

$$
t_{\rm E} \sim t_{\rm E} + \beta^{\rm AdS}, \quad \beta^{\rm AdS} = \frac{2\pi}{r_+}
$$

▶ The Chern-Simons gauge configurations can be classified by gauge invariant Wilson loop:

$$
\mathcal{P}e^{\oint A} = \mathcal{P}e^{\oint dt_E A_t} = e^{-i\theta L_0} e^{\Omega}e^{i\theta L_0}.
$$

The BTZ black hole corresponds to the eigenvalues of holonomy Ω equals $(+\pi, -\pi)$, however if we consider large gauge transformations, other values $(2\pi(n+\frac{1}{2}), -2\pi(n+\frac{1}{2})), n \in \mathbb{Z}^+$ are also allowed.

医牙周的 医胃的 医唇

 Ω

We proposed an explicit dS_3/CFT_2 correspondence by suitable analytic continuation of AdS_3/CFT_2 one.

[Hikida, Nishioka, Takayanagi, Taki, 2022], [Chen, Hikida 2022], [Chen, Chen, Hikida 2022]

 \blacktriangleright We analytically continue the CS-theory to $G = SL(2, \mathbb{C})^2$:

$$
S = S_{\text{CS}}[A] - S_{\text{CS}}[\bar{A}], \quad S_{\text{CS}}[A] = -\frac{\kappa}{4\pi} \int \text{tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)
$$

$$
\kappa = \frac{\ell}{4G_N}.
$$

We have set $\ell_{\text{AdS}} \to i \ell$ such that $k \to i \kappa$. Also $e^{-\rho} = e^{-(\tilde{\rho} + i \frac{\pi}{2})}$.

▶ We need to impose the complex conjugation as: $(L_0)^* = -L_0$, $(L_{\pm})^* = L_{\mp}$. The gauge fields are now expressed as:

$$
A = e^{-(\tilde{\rho} + \pi i/2)L_0} a e^{(\tilde{\rho} + \pi i/2)L_0} + L_0 d\tilde{\rho}, \quad \bar{A} = e^{(\tilde{\rho} + \pi i/2)L_0} \bar{a} e^{-(\tilde{\rho} + \pi i/2)L_0} - L_0 d\tilde{\rho}
$$

$$
a = a_+(x^+) dx^+, \quad \bar{a} = \bar{a}_-(x^-) dx^-.
$$

where $x^{\pm} = it \pm \phi$, $\phi \sim \phi + 2\pi$. **KO K (B) K E K (B) K H K K K K K K K K K K K** Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and \triangleright To obtain the dS₃ analogue of BTZ black hole, we can consider the following configuration:

$$
a_+(x^+) = L_1 + \frac{2\pi \mathcal{L}}{\kappa} L_{-1}\,, \quad \bar a_-(x^-) = -L_{-1} - \frac{2\pi \mathcal{L}}{\kappa} L_1\,,
$$

▶ Following the coordinate shift: $\tilde{\rho} \to \tilde{\rho} + \log \sqrt{\mathcal{L}/\kappa}$ and continuation $\tilde{\rho} = i\theta$, we have:

$$
\ell^{-2}ds^2 = d\theta^2 - \frac{8\pi\mathcal{L}}{\kappa}\sin^2\theta dt^2 + \frac{8\pi\mathcal{L}}{\kappa}\cos^2\theta d\phi^2.
$$

which can be mapped into dS_3 BTZ black hole metric via the coordinate and parameter transformations:

$$
r = \sqrt{\frac{8\pi\mathcal{L}}{\kappa}}\cos\theta\,,\quad \mathcal{L} = \frac{\ell r_+^2}{32\pi G_N} = \frac{\kappa r_+^2}{8\pi}
$$

K個→ K ミ K K E K → C K G K G K

 \triangleright This allows us to obtain asymptotically dS_3 BTZ black hole geometry:

$$
ds^2 = \ell^2 \left[-(r_+^2 - r^2) dt^2 + \frac{1}{r_+^2 - r^2} dr^2 + r^2 d\phi^2 \right]
$$

Here $\phi \sim \phi + 2\pi$ and the horizon is at $r_+ = \sqrt{1 - 8 G_N E}$. Under $t \rightarrow -it_E$, the absence of conical singularity at horizon needs $t_E \sim t_E + 2\pi/r_+$. The Gibbons-Hawking entropy of dS₃ BTZ black hole is thus:

$$
S_{\rm GH}=\frac{2\pi \ell r_+}{4G_N}=\frac{\pi \ell \sqrt{1-8G_N E}}{2G_N}
$$

 \triangleright We can define the holonomy matrix for the gauge field A along the compactified time cycle as:

$$
\mathcal{P}e^{\oint A} = \mathcal{P}e^{\oint dt_E A_+} = e^{-(i\theta + \pi i/2)L_0} e^{\Omega} e^{(i\theta + \pi i/2)L_0}
$$

メロメ メ御 メメ ヨメ メヨメ 一番

 298

the eigenvalues for Ω are $(i\pi, -i\pi)$.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and geometries through Historic

 \triangleright Applying large gauge transformation, Ω now takes the values $(2\pi(n+\frac{1}{2}), -2\pi(n+\frac{1}{2})), n \in \mathbb{Z}^+,$ given by:

$$
a=-\sqrt{\frac{2\pi\mathcal{L}}{\kappa}}\sigma_1(d\phi+(2n+1)dt_E),\quad \bar{a}=-\sqrt{\frac{2\pi\mathcal{L}}{\kappa}}\sigma_1(d\phi-(2n+1)dt_E)
$$

where σ_1 is a Pauli matrix. They generate the following metric:

$$
ds^2 = \ell^2 \left[d\theta^2 + \frac{8\pi(2n+1)^2 \mathcal{L}}{\kappa} \sin^2 \theta dt_E^2 + \frac{8\pi \mathcal{L}}{\kappa} \cos^2 \theta d\phi^2 \right] \,.
$$

if we set
$$
r = \sqrt{1 - 8G_N E} \cos \theta
$$
 and $\frac{8\pi \mathcal{L}}{\kappa} = 1 - 8G_N E$.

▶ Each saddle point contribute to the Chern-Simons path integral with the action after Euclideanization:

$$
-S\,(\equiv S_{\rm GH}^{(n)})=4\pi(2n+1)\sqrt{2\pi\kappa\mathcal{L}}=(2n+1)\frac{\pi\ell\sqrt{1-8G_N E}}{2G_N}
$$

these equivalent saddles need to be summed over, however they may lead to over-counting. K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 이익(연)

Using the explicit dS_3/CFT_2 , we can select the correct saddle points from dual CFT. [Chen, Hikida, Taki, Uetoko, 2023]

 \triangleright We start with the regularized action for Liouville theory:

$$
S_{\rm L}=\frac{1}{4\pi}\int_D d^2\sigma [\partial_a\phi\partial_a\phi+4\pi\mu e^{2b\phi}]+\frac{Q}{\pi}\oint_{\partial D}\phi d\theta+2Q^2\ln R
$$

▶ The vertex operator considered take the form:

$$
V_{\alpha} = e^{2\alpha\phi}, \quad h = \bar{h} = \alpha(Q - \alpha)
$$

▶ While the background charge, central charge and coupling are related via:

$$
c = 1 + 6Q^2 = 1 + 6(b + b^{-1})^2
$$

and it can be related gravitational constant via:

$$
c\,(\equiv ic^{(g)})=i\cdot 6\kappa=i\frac{3\ell}{2G_N}
$$

 290

the classical limit $G_N \rightarrow 0$ corresponds to large c limit.

 \triangleright For dS₃ BTZ black hole, it corresponds to the insertion of two heavy operators in such a limit:

$$
b^{-2} = \frac{ic^{(g)}}{6} - \frac{13}{6} + \mathcal{O}((c^{(g)})^{-1}), \quad b \to 0
$$

We also scale $\alpha = \eta/b$ and $\phi_{\bm{c}} = 2b\phi$, $\lambda = \pi\mu b^2$ to obtain:

$$
b^2 S_{\rm L} = \frac{1}{16\pi} \int_D d^2\sigma [\partial_a \phi_c \partial_a \phi_c + 16\lambda e^{\phi_c}] + \frac{1}{2\pi} \oint_{\partial D} \phi_c d\theta + 2\ln R + \mathcal{O}(b^2)
$$

Here η is kept fixed such that $2h = 2\alpha(Q - \alpha) = i\ell E$ and $1-2\eta=\sqrt{1-8G_{\mathsf{N}}E}$. Need $0<\eta<\frac{1}{2}$ for existence.

 \blacktriangleright The path integral for the two point function reduces to

$$
\langle V_{\alpha}(z_1)V_{\alpha}(z_2)\rangle \equiv \int \mathcal{D}\phi_c e^{-S_{\rm L}} \exp\left(b^{-1}\alpha(\phi_c(z_1) + \phi_c(z_2))\right)
$$

i. e. the operator insertions become δ -sources in this heavy-limit.

▶ From the back reacted action, we can deduce the E.O.M for ϕ_c :

$$
\partial\bar{\partial}\phi_c = 2\lambda e^{\phi_c} - 2\pi\eta[\delta^{(2)}(z - z_1) + \delta^{(2)}(z - z_2)], \quad \lambda \equiv \pi\mu b^2
$$

where near $z_{1,2}$, we set $\phi_c(z) \sim -4\eta |z - z_{1,2}|$, creating conical deficits on the CFT world sheet metric. We can easily generalize to higher point correlation functions.

▶ We have multiple allowed solutions $φ_{c(n)} = φ_{c(0)} + 2πn$, which yields the on-shell action:

$$
b^2 \tilde{S}_{\rm L}^{(n)} = 2\pi i (n + 1/2)(1 - 2\eta) + (2\eta - 1) \ln \lambda + 4(\eta - \eta^2) \ln |z_{12}| + 2[(1 - 2\eta) \ln(1 - 2\eta) - (1 - 2\eta)].
$$

where $\tilde{S}^{(n)}_\text{L}$ $L^{(n)}$ is the modified action including the back reaction and in principle need to sum over all solutions labeled by n , which precisely corresponds to the CS monodromy.

 \blacktriangleright Happily the exact expression for the Liouville two point function is known: [DOZZ 1994, 1995].

$$
\langle V_{\alpha}(z_1)V_{\alpha}(z_2)\rangle = |z_{12}|^{-4\alpha(Q-\alpha)}\frac{2\pi}{b^2}[\pi\mu\gamma(b^2)]^{(Q-2\alpha)/b}\gamma\left(\frac{2\alpha}{b}-1-\frac{1}{b^2}\right)\gamma(2b\alpha-b^2)\delta(0)
$$

 \blacktriangleright Taking the semi-classical limit of the exact two point function: [Harlow, Maltz, Witten 2011].

$$
\langle V_{\alpha}(z_1)V_{\alpha}(z_2)\rangle \sim \delta(0)|z_{12}|^{-4\eta(1-\eta)/b^2} \lambda^{(1-2\eta)/b^2}
$$

$$
\times \left(e^{-\pi i(1-2\eta)/b^2} - e^{\pi i(1-2\eta)/b^2}\right) \exp\left\{-\frac{2}{b^2} \left[(1-2\eta)\ln(1-2\eta) - (1-2\eta)\right]\right\}.
$$

and $\delta(0)$ comes from setting $\alpha=\alpha'$. In obtaining this limit, it is crucial that $\mathrm{Re}(b^{-2}) < 0$, i. e. consistent with our earlier relation between *b* and $ic^{(g)}$ for dual CFT to de Sitter. This result can only be reproduced by $\tilde{S}_{\rm L}^{(n)}$ with $n=0,-1$, leading us to correct saddles.

KO K (B) K E K (B) K H K K K K K K K K K K K

 \triangleright Taking the modulus of the two point function, where the $|z_{12}|$ dependence now cancels out, as $1/b^2 \sim i\epsilon^{(g)}/6$ is purely imaginary, we have:

$$
|\langle V_{\alpha}(z_1)V_{\alpha}(z_2)\rangle| \sim \left|e^{\frac{\pi c^{(g)}}{6}\sqrt{1-8G_NE}}-e^{-\frac{\pi c^{(g)}}{6}\sqrt{1-8G_NE}}\right|
$$

the leading order contribution precisely reproduces the Gibbons-Hawking entropy S_{GH} of the corresponding dS black holes.

 \triangleright This also implies that identification of the phase of the two point function:

$$
\langle V_{\alpha}(z_1)V_{\alpha}(z_2)\rangle \sim \Psi \sim \exp\left(\frac{S_{\text{GH}}}{2} + i\mathcal{I}\right) \Longrightarrow \mathcal{I} = \frac{c^{(g)}}{6} \log \lambda
$$

such that λ is manifestly real. Consistent with the earlier CFT computation for the phase in [Hikida, Nishioka, Takayanagi, Taki, 2022]

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

メタト メミトメミト 一番

 OQ

It is also interesting to employ similar strategy to investigate the bulk geometries dual to higher point correlation functions of heavy operators.

 \blacktriangleright For three point function, we have: $[DOZZ 1994, 1995]$

$$
\langle V_{\alpha_{1}}(z_{1},\bar{z}_{1})V_{\alpha_{2}}(z_{2},\bar{z}_{2})V_{\alpha_{3}}(z_{3},\bar{z}_{3})\rangle = \frac{C(\alpha_{1},\alpha_{2},\alpha_{3})}{|z_{12}|^{2(h_{1}+h_{2}-h_{3})}|z_{13}|^{2(h_{1}+h_{3}-h_{2})}|z_{23}|^{2(h_{2}+h_{3}-h_{1})}}
$$

$$
C(\alpha_{1},\alpha_{2},\alpha_{3}) = \left[\lambda\gamma(b^{2})b^{-2b^{2}}\right]^{(Q-\sum_{i}\alpha_{i})/b}
$$

$$
\times \frac{\Upsilon'_{b}(0)\Upsilon_{b}(2\alpha_{1})\Upsilon_{b}(2\alpha_{2})\Upsilon_{b}(2\alpha_{3})}{\Upsilon_{b}(\sum_{i}\alpha_{i}-Q)\Upsilon_{b}(\alpha_{1}+\alpha_{2}-\alpha_{3})\Upsilon_{b}(\alpha_{2}+\alpha_{3}-\alpha_{1})\Upsilon_{b}(\alpha_{3}+\alpha_{1}-\alpha_{2})}
$$

where $\Upsilon_b(x)$ is the upsilon function and again take the large scaling limit $\alpha_i = \eta_i/b$, $b \to 0$ and $0 < \eta_i < \frac{1}{2}$ fixed for Seiberg bound.

 \triangleright We can further divide the parameters into two classes:

I:
$$
\sum_{i} \eta_i > 1
$$
, II: $\sum_{i} \eta_i < 1$, $\eta_i + \eta_j - \eta_k > 0$.

Region I comes from convergence of the path integral, while Region II requires the complex saddles to make senses. 레이저 메이지 (Box)

 2980

▶ For Region I, DOZZ coefficient reduces in this limit to:

$$
C(\alpha_1, \alpha_2, \alpha_3) \sim \lambda^{(1-\sum_i \eta_i)/b^2} \exp\left[\frac{1}{b^2} \left\{1 - \sum_i \eta_i + F(2\eta_1) + F(2\eta_2) + F(2\eta_3) + F(0)\right\}\right]
$$

$$
- F(\sum_i \eta_i - 1) - F(\eta_1 + \eta_2 - \eta_3) - F(\eta_2 + \eta_3 - \eta_1) - F(\eta_3 + \eta_1 - \eta_2) \bigg\} \bigg],
$$

where $1/b^2$ is purely imaginary at leading order in $1/c$ expansion and $F(x)$ is a real function arising from the log $\Upsilon_b(x)$.

▶ The norm is thus:

$$
|\langle V_{\alpha_1}(z_1,\bar{z}_1)V_{\alpha_2}(z_2,\bar{z}_2)V_{\alpha_3}(z_3,\bar{z}_3)\rangle|^2 \sim \mathcal{O}(1)
$$

The obvious interpretation is that we cannot construct S^2 with three conical deficits given by $\eta_i\pi$ with $\sum_i \eta_i > 1$, hence no corresponding geometry.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

K個→ K ヨ K K ヨ K コ ヨ → YO Q Q Y

▶ For Region II, using $\text{Re}[(\sum_i \eta_i - 1)/b^2] > 0$, we obtain:

$$
C(\alpha_1, \alpha_2, \alpha_3) \sim \left(e^{-\pi i \frac{1 - \sum_i \eta_i}{b^2}} - e^{\pi i \frac{1 - \sum_i \eta_i}{b^2}} \right) \lambda^{(1 - \sum_i \eta_i)/b^2}
$$

$$
\times \exp \left[\frac{1}{b^2} \left\{ F(2\eta_1) + F(2\eta_2) + F(2\eta_3) + F(0) - F\left(\sum_i \eta_i\right) \right\} \right]
$$

$$
- F(\eta_1 + \eta_2 - \eta_3) - F(\eta_2 + \eta_3 - \eta_1) - F(\eta_3 + \eta_1 - \eta_2)
$$

$$
+ 2 \left(1 - \sum_i \eta_i \right) \log \left(1 - \sum_i \eta_i \right) - 2 \left(1 - \sum_i \eta_i \right) \} \right].
$$

where again only two saddles contribute and its norm now yields:

$$
|\langle V_{\alpha_1}(z_1,\bar{z}_1)V_{\alpha_2}(z_2,\bar{z}_2)V_{\alpha_3}(z_3,\bar{z}_3)\rangle|^2 \sim \exp\left[\frac{\pi c^{(g)}}{3}\left(1-\sum_i \eta_i\right)\right]
$$

Most of the exponents cancel out due to the overall purely imaginary factor $\frac{1}{b^2}$.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

個→ イヨ→ イヨ→ ニヨー つんぺー

 \blacktriangleright We propose the bulk geometry to be:

$$
ds^2 = d\theta^2 + \cos^2 \theta ds_{\text{con}}^2
$$

where $\textit{ds}^2_{\mathrm{con}}$ denotes the metric of \mathcal{S}^2 with three conical deficits [Umehara, Yamada 2000], where each deficit is created by the heavy vertex operator insertion with deficit angle $4\pi\eta_i.$

▶ The resultant volume is $(1 - \sum_i \eta_i) \ge 0$ fraction of S^3 , reproducing the results from Liouville three point function in this limit.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

 $\mathcal{A} \equiv \mathcal{A} \quad \mathcal{A} \equiv \mathcal{A} \qquad \mathcal{B}$

 OQ

So far we have only discussed the dS case, the situation with AdS is also interesting and somewhat puzzling.

▶ We can see this from the exact two point function but now with $\mathrm{Re}(b^{-2})>0$, the analytic continuation of <code>Γ-function</code> yields:

$$
\langle V_{\alpha}(z_1)V_{\alpha}(z_2)\rangle \sim \frac{1}{e^{-\frac{\pi i}{b^2}(1-2\eta)}-e^{\frac{\pi i}{b^2}(1-2\eta)}}|z_{12}|^{-\frac{4}{b^2}\eta(1-\eta)}e^{-\frac{2}{b^2}[(1-2\eta)\ln(1-2\eta)-(1-2\eta)]}
$$

after the expanding the denominator, it becomes an infinite series:

$$
\frac{1}{e^{-\frac{\pi i}{b^2}(1-2\eta)}-e^{\frac{\pi i}{b^2}(1-2\eta)}}\sim e^{\pi i(1-2\eta)\frac{\ell_{\text{AdS}}}{4G}}\sum_{n=0}^{\infty}e^{n\pi i(1-2\eta)\frac{\ell_{\text{AdS}}}{2G}}\,.
$$

 \triangleright We can use holography dictionary to relate that $\mathcal{Z}_{\text{AdS}} = \langle V_{\alpha}(z_1)V_{\alpha}(z_2) \rangle$, we have infinite many saddles:

$$
\mathcal{Z}_{\text{AdS}} = \sum_{n=0}^{\infty} \mathcal{Z}_n
$$

$$
\mathcal{Z}_n \sim e^{\frac{\ell_{\text{AdS}}}{4G}(2n+1)\pi i (1-2\eta)} |z_{12}|^{-\frac{\ell_{\text{AdS}}}{2G}\eta (1-\eta)} e^{-\frac{\ell_{\text{AdS}}}{2G}[(1-2\eta)\ln(1-2\eta)-(1-2\eta)]}.
$$

 \blacktriangleright It is interesting to consider the complexification of euclidean AdS₃:

$$
ds^{2} = \ell_{\text{AdS}}^{2} \left[\left(\frac{d\theta(u)}{du} \right)^{2} du^{2} + \sinh^{2} \theta(u) d\Sigma^{2} \right]
$$

where $\theta(u)$ is a holomorphic function of u. If we consider geometries approach to AdS₃ as $u \to \infty$ and truncates at $u = 0$, thus need $\theta \rightarrow u$, $u \rightarrow \infty$ and $u = in\pi$, $u = 0$.

 \blacktriangleright The two geometries may be interpolated via:

$$
\theta = n\pi i (1 - u) \quad (0 \le u \le 1), \quad \theta = (u - 1) \quad (u > 1)
$$

while this yields $EAdS_3$ for $u > 1$, for $0 \le u \le 1$ the geometry becomes multiple wrapping over S^3 of imaginary radius $i\ell_{\rm AdS}.$

▶ This may seem somewhat unphysical, even though from Chern-Simons gauge theory, we can construct configuration with action 2π *in*, where *n* labels π_3 of imaginary S^3 .

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

→ 重 × → 重 × → 重

 OQ

We can also consider such interpolation in the embedding space.

 \triangleright Starting with the asymptotic geometry of Euclidean AdS₃:

$$
\tilde{X}_0^2 + X_1^2 + X_2^2 - X_3^2 = -\ell_{\text{AdS}}^2
$$

We may want to interpolate it to Lorentzian AdS_3 given by:

$$
-X_0^2 + X_1^2 + X_2^2 - X_3^2 = -\ell_{\text{AdS}}^2
$$

by setting $i\tilde{X}_{0}=X_{0},$ however Lorentzian AdS $_{3}$ has trivial topology. Instead we may consider the interpolation $X_3 = i\tilde{X}_3$, such that:

$$
\tilde{X}_0^2 + X_1^2 + X_2^2 + \tilde{X}_3^2 = -\ell_{\text{AdS}}^2
$$

with $|X_3| \geq \ell_{\text{AdS}}$. We can glue the two geometries at $X_3 = i\tilde{X}_3 = \ell_{\rm AdS}$ and $X_1 = X_2 = \tilde{X}_0 = 0$.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and geometries through Historic

化重氮 化重氮二重

 -990

Another interesting approach to explore the interpolation is mini-superspace approach. [Chen, Hikida, Taki, Uetoko, 2024]

▶ Starting with Einstein-Hilbert action for positive cosmological constant and contact term:

$$
I=-\frac{1}{16\pi G}\int d^3x\sqrt{g}\left(R-\frac{2}{\ell_{\rm dS}^2}\right)+I_{\rm bdy}\,. \ \ I_{\rm CT}=\frac{1}{8\pi G}\int d^2x\sqrt{h}\sqrt{-\frac{1}{\ell_{\rm dS}^2}}
$$

 \triangleright Substituting the homogeneous metric ansatz:

$$
ds^2 = \ell_{\rm dS}^2 \left[N(\tau)^2 d\tau^2 + a(\tau)^2 d\Omega_2 \right]
$$

where $0 \leq \tau \leq 1$ and we can use the gauge redundancy to fix $N(\tau) = N$. The gravitational path integral is now reduced to:

$$
\Psi = \int_C dN \int \mathcal{D}a \, e^{-I[a;N]-I_{\rm CT}}
$$

$$
I[a;N] = -\frac{\ell_{\rm dS}}{2G} \int_0^1 d\tau \, N \left(\frac{1}{N^2} \left(\frac{da}{d\tau}\right)^2 - a^2 + 1\right) + \text{(boundary contributions)}
$$

We thus need to evaluate it saddle contributions and consider \mathcal{C} . Ω Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and We reduce the problem into solving for $a(\tau)$ and fluctuations around it.

 \blacktriangleright If we impose the Dirichlet boundary conditions $a(0) = 0$ and $a(1) = a_1 > 0$, the solution to E.O.M for $a(\tau)$ is:

$$
\bar{a}^{(N)}(\tau)=\frac{a_1}{\sin N}\sin{(N\tau)}
$$

If we include the fluctuations around $\bar{a}^{(N)}(\tau)$, the path integral for N becomes:

$$
\Psi = \int_C dN \left(\frac{1}{\sqrt{N}\sin N}\right)^{\frac{1}{2}} e^{-I[\bar{a}^{(N)};N]-I_{\text{CT}}}
$$

$$
I[\bar{a}^{(N)};N] = -\frac{\ell_{\text{dS}}}{2G} \left(N + a_1^2 \cot N\right)
$$

 \triangleright To work out C, we first consider the saddle for N satisfying $\partial I[\hat{a}, N]/\partial N = 0$, the solutions are $(m \in \mathbb{Z})$:

$$
N_m^+ = \left(m + \frac{1}{2}\right)\pi + i\log\left(a_1 + \sqrt{a_1^2 - 1}\right)
$$

$$
N_m^- = \left(m + \frac{1}{2}\right)\pi - i\log\left(a_1 + \sqrt{a_1^2 - 1}\right)
$$

 $2Q$

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and geometries through Historic

 \blacktriangleright It is interesting to note that in complex N-plane, the steepest descent emanating from one saddle point can end up at another saddle point (red dots):

This implies that we have Stoke's phenomenon, and makes the identification of C difficult.

 Ω

▶ Instead we can consider slight deformation of contours by deforming $\ell_{\text{dS}} \rightarrow \ell_{\text{dS}} \pm i\epsilon$:

We can identify the correct shift by interpreting it as subleading correction in:

$$
c = -i\frac{3\ell_{\rm dS}}{2G} + 13 + \mathcal{O}(G) \, .
$$

 290

such that it should be $\ell_{dS} \rightarrow \ell_{dS} + i\epsilon$.

 \blacktriangleright To complete the construction of $\mathcal C$, notice that each saddle N_m^{\pm} :

$$
\Psi_m^{\pm} \sim e^{\frac{(2m+1)\ell_{\rm dS}\pi}{4G}} (2a_1)^{\mp i \frac{\ell_{\rm dS}}{2G} \pm \frac{\epsilon}{2G}} \ .
$$

where in large a_1 limit, Ψ_m^- in the lower half becomes suppressed. Since N acts as time-direction, naively we should integrate along $i\mathbb{R}$ in the upper half or deforming it into \mathcal{J}^+_{-1} , however it implies only exponentially suppressed saddle ${\sf N}_{-1}^+$ which is insufficient.

 \blacktriangleright This implies that we should also pick up additional saddles N_0^+ and the contour which does this can be deformed into:

$$
-{\cal J}_{-1}^+ + {\cal J}_0^- + {\cal J}_0^+ \,,
$$

which goes around the branch cut and back to upper half plane. The contribution from N_0^- in lower half disappears in large a_1 limit.

K ロ K イ団 K K ミ K K モ K エ エ エ イロ K K C

We perform similar analysis for the negative cosmological constant case, here are the summary.

 \blacktriangleright The solution for Dirichlet boundary conditions yields:

$$
\bar{a}^{(N)}(r) = \frac{a_1}{\sinh N} \sinh(Nr)
$$

where the fluctuation determinant around it can be evaluated analogous to yield:

$$
\mathcal{Z} = \int_{\mathcal{C}} dN \left(\frac{1}{\sqrt{N} \sinh N} \right)^{\frac{1}{2}} e^{-I[\bar{a}^{(N)};N] - I_{\text{CT}}} \nI[\bar{a}^{(N)};N] = -\frac{\ell_{\text{AdS}}}{2G} [N + a_1^2 \coth N]
$$

 \triangleright The one-loop corrected action yields the following saddle points:

$$
N_m^+ = \operatorname{arcsinh} a_1 + \pi i m \quad (m \in \mathbb{Z}),
$$

$$
N_m^- = -\operatorname{arcsinh} a_1 + \pi i m \quad (m \in \mathbb{Z}),
$$

 (1) (1)

④ 重 約 ④ 重 約 一重

 298

The saddle points and branch cuts are given here:

Here we again see that there are Stoke's phenomena where paths of steepest descend connecting saddle points, but moreover we have the thimble \mathcal{J}^+_m crossing the branch cut. These make the identification of $\mathcal C$ difficult.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and geometries through Historic

→ ス重→ 三重

 298

If we now deform the contour by shifting $\ell_{\text{AdS}} \rightarrow \ell_{\text{AdS}} \pm i\epsilon$, and choose the branch cuts so as to avoid the steepest descend paths, we obtain:

Here the individual saddle contribute as:

$$
\mathcal{Z}_m^{\pm} \sim e^{\frac{im\pi \ell_{\text{AdS}}}{2G}} (2a_1)^{\pm \frac{\ell_{\text{AdS}}}{2G}}
$$

for saddle labeled by \mathcal{N}^{\pm}_m respectively.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

 $\leftarrow \equiv \rightarrow \rightarrow$

 $2Q$

▶ For $\ell_{\text{AdS}} \rightarrow \ell_{\text{AdS}} + i\epsilon$, the final total contour is:

$$
\mathcal{C} \rightarrow \sum_{m=0}^\infty \mathcal{J}_m^+ - \sum_{m=1}^\infty \mathcal{J}_m^-,
$$

which yields:

$$
\mathcal{Z}\sim\sum_{m=0}^\infty e^{\frac{i\pi m (\ell_{\rm AdS}+i\epsilon)}{2G}}(2a_1)^{\frac{\ell_{\rm AdS}+i\epsilon}{2G}}=-\frac{2ie^{-\frac{i\pi\ell_{\rm AdS}}{4G}}}{\sin\left(\frac{\ell_{\rm AdS}\pi}{4G}\right)}(2a_1)^{\frac{\ell_{\rm AdS}}{2G}}\,.
$$

which differs from the CFT result by an overall phase factor. ▶ For $\ell_{\text{AdS}} \rightarrow \ell_{\text{AdS}} - i\epsilon$, the final total contour is:

$$
\mathcal{C}\rightarrow -\sum_{m=1}^\infty \mathcal{J}_{-m}^+ +\sum_{m=0}^\infty \mathcal{J}_{-m}^-.
$$

which yields:

$$
\mathcal{Z} \sim -\sum_{m=-\infty}^{0} e^{\frac{i\pi m(\ell_{\text{AdS}}-i\epsilon)}{2G}} (2a_1)^{\frac{\ell_{\text{AdS}}-i\epsilon}{2G}} = -\frac{2ie^{\frac{i\pi \ell_{\text{AdS}}}{4G}}}{\sin\left(\frac{\ell_{\text{AdS}}}{4G}\right)} (2a_1)^{\frac{\ell_{\text{AdS}}}{2G}}
$$

which again differs from the CFT result by an overall phase factor. The analysis allows us to simply pick the contour C_1 to be \mathbb{R}_{++} , we see 990 Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

- \blacktriangleright In this talk we demonstrate how holography may help us to explore the complex geometries arising from the gravitational path integral.
- ▶ We actually also studied higher point CFT correlation functions with heavy operator insertions which can be dual to Chern-Simons Wilson lines and compute their monodromy matrices.
- \blacktriangleright It would be interesting to extend the analysis presented to higher point CFT correlation functions and CFT on higher genus Riemann surfaces.
- Extensions to higher spin gravity theories and the dual $SL(N)$ Toda CFT may also be interesting.

Heng-Yu Chen National Taiwan University Based on the Exploring complex saddles and

K個→ K ミ K K E K → C K G K G K