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Indirect holography

Flat space-time is part of AdS
Flat space physics are encoded into AdS/CFT




Observables in AdS vs Flat space

In the presence of gravity, diffeomorphism invariance makes it impossible to define local correlation functions.

+o [N AdS, gauge invariant observables can be defined at the
boundary as conformal

(O1(21)Oa(22)O3(23)Os(4))
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operators

Flat space has no boundary.

<
One can hope to define observables asymptotically
The only precise observable is the S-ﬂmatrix ‘ to
(out|in) >

scattering states



A proposal involving Mellin amplitudes [Penedones 2010]
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S-matrix

Has = Hfree
dlx, =¢b
(out|in) = VR Fo'N / D¢ 19 Win|@al ,
¢a/b quz —Qba, )
Fock space wave-functionals
Has = Hifree

Objective of scattering theory: Compute overlap of two different scattering states
of the full hamiltonian H

Such states are usually unavailable. Simpler scattering states must be used,
by approximating the asymptotic Hamiltonian

Asymptotic decoupling: Asymptotic Hamiltonian is considered to be free.
Asymptotic states form a Fock space. How do we construct these in AAS/CFT?



Extrapolate dictionary in AdS/CFT
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The in/out wave-functionals can be generated with Euclidean path integrals:
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It is not clear how to choose sources so that the state is a Fock space state in the flat limit!

Our approach will be different: |\IJ> — | O>
Construct free local bulk Extract creation/annihilation Take a flat limit
operators in the CFT —0 operators —>  (Large AdS radius)

(HKLL) (Fourier transform)
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Field can be reconstructed in the CFT using HKLL.
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Results

Massless fields

0

\V 2W5 Qin 5 :c_/ dr e“rL(T+3) 0 (7, —p) ,

— T

QwﬁaT ﬁ—c+/ dr e~ wrL(T+3) ot (1, —p) ,
V2w5 Qout 5 =C4 / dr ¢r 75) 0™ (1,5)
0
Qwﬁalut,ﬁ :c_/o dt e_“"pL(T_%)(’)jL (1,p) ,

Integrals dominated by windows
of size o(/r)at 7 ==+35

Massive fields
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Finite flat space mass involves
large CFT operator dimensions

\Y% pr out p

e lin(52)
Lm\ﬁl)/ dr'e PR ) T ok
0

Integrals dominated by windows
of size o(1/L) at

Im (T’) = %log (wﬁ—i—m>

wﬁ—m

Re(7') ~ T

A = 5+mL+(9(L)—1



- - Euclidean caps
Massive scattering state oM,

Future/past infinity

g
L ——————

==
-

OM _

Massless scattering state

| orenztian rims

to|=l

Future/past Null infinity



Some trivial examples in AdSd:1
S{p1,p2} ~ 5((1)(1?1 + p2)

S{p1,p2,p3} ~ 5(d)(1’1 +p2+p3). p2
O+ Os

\r —— Ps3
0 P1

2

BMS:s global block from CFT2 global block

S{p1,p2,p3,p4}p’2:—m’2 ~ 5(3) (pl + P2 + P3 + p4)(5 (8 T m,Q)

O O3 O
R '




Scattering against a cone (D=2+1)

[Deser and Jackiw '88, 't Hooft '88, Moreira '95]
outgomg plane-wave

NTU
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Incoming wave
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Same result from the flat limit of a CFT2 correlator

CFT deficit state Q) CFT, = OA_‘—z(l —a2)|0)cFT,
. - . /2 ‘ B o 2 . 5 5o
Dual to a conical deficit AdS geometry  ds® = —— (dp” — a*d7* + o sin® p°d¢”)
COS® p

S{p1,p2} = HC(pi)/dl‘i e~ (a|O (11, x1) O (12, x2)| @)
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Sin =

S{p p} _(5‘ [)+[) )+(S(u\!—‘—b;'/) - ”, ,
(‘().\"'—“ COS| D Q")
Os
Non-trivial CFT2 correlators turn
Into non-trivial scattering events In 0,

asymptotically flat geometries.



Part Il - Gauge fields

 What kind of CFT's are dual to U(1) gauge theories in AdS?
e Constructing photon creation/annihilation operators in Minkowski space using CFT

 Weinberg soft theorems as a consequence of CFT Ward identities



Scalar fields in AdS/CFT

Generally, a scalar field has two solutions next to the boundary of AdS

6(p, ) —— (cos p)* alx) + (cos p) B(a)
Usually " S TOR=N Fmah able-becaltse d 272 d* In this range, both fall-offs
. e 1 > m Le > -

Two possible quantizations:

Legendre transform

Fix B(x) at the boundary - B(x)=J'(x)
0{ Related by RG flow

Quantize a(x) - Dual operator has A=A+ * Make a(x)=J(x) dynamical

0ScpT = g/ddx O?
4

* Couple to new background

relevant operator source J'(x)

Fix a(x) at the boundary - a(x)=J(x)
@{

— * Resulting theory matches
N —
Quantize B(x) - Dual operator has A=A _ B2 (0 theory



U(1) gauge fields in AdS/CFT

Two possible fall-offs Au(p; x) — (cos P)lau(z) + (cos P)Oﬁu(m)

P—5

Two possible quantizations:

{ Fix B(x) at the boundary - 3,,(z) = A,,(z) = non-dynamical background field in the CFT

uantize o, (x)- Dual operator has A=d-1 and it is a conserved current 7, (x
Q u() P Ju () i Legendre

§ transform

Fix a(x) at the boundary - «a,(x) = B, (x)
o{

Quantize ((x) - Dual operator has A=1, and it is a dynamical CFT gauge field.

@ Fixes the magnetic field Fab at the boundary, while @ fixes the electric field Fpa

Electro-magnetic duality in the bulk ~ Legendre transform in the CFT



Ward identities Q: What do these Ward identities

teach us about flat space-time?
In CFT's of the form (’ the dynamical current obeys a Ward identity

0, (0|T{5"(2)O(z1) - - - O(x)O(y1) - - - O(ym) }|0)
= (Z ;6P (z — ;) — Z q;6) (z — yz-)) O|T{O(z1) - O(z,)O(y1) - - - O(ym) }|0)

In CFT's of the form @ The dynamical gauge field A,, can be used to construct a topological current

1
fuw =04, —0,A, and (xf)"= e“”pf,,p

which obeys a Ward identity

Op(O| T{ (=) () M(z1) - - M(@n) M (1) - - M(ym) }0)

) (Z 6:8 (& — 1) = >~ 9;69 (x y)) OIT{M(@1) - - M(@a) M(y1) - - M ()} 0)



Photon scattering states from a flat limit of AdS/CFT



Constructing flat space creation/annihilation operators using AdS/CFT

In Scattering theory, Fields are considered free asymptotically. We thus focus on free fields.

: : : p d°q 1 A iq-T x ~(MNT —ig-x : :
In Minkowski space, a free U(1) field reads  Au(z) = / ( : = > (69)(13’\)6"’ + el aﬂf{\)Te ! ) ,  with 2 € Minks4,

2m)3 | /2w; =

A
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Inverting: — Free local bulk operators in AdS

A e

Y S
B3 Mkl f Au(z),

Au(p, x) —— cos p ju(z)
P75

V, F* =0

A, (z) = / P! [KY (p,2,2) 2V (2') + K5 (p,2,2)) V45 @)| +he. | V() = / ol [KE (p, 232" €90V Af (o)) + KY (p,32') VO AL ()] +hc.

Flat limit

¢
7 and p:%, with L — o0.
Fourier transform

T =
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Result
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From CFT physics to Flat physics



Asymptotic symmetries of the S-matrix
The S-matrix is invariant under the action of an infinite set of symmetries

Maxwell equations There are a family of conserved currents These yield a family of conserved charges
d*F =xjg, and dF =x*jy xj% =dEexF), and xj5;=d(eF) Q%(Z):/*j%:/(ds/\*F+e>|<jE),
bY b

JE and jM are conserved

52:/*'5:/d€/\F—|—5*' .
d*.]E:dz*F:(), and d*jM:dQF:O QM( ) - JM E( jM)

Conserved in the sense that <Out\Q%/M(Z+)S — SQ%/M(E_)\im =0

These charges have a 'soft'(radiative) part and a 'hard'(coulombic) part

wg—0

S0 —1 z | \/§ g \/§ 2 |
oft (57 ) — = lim wq/dQZE(Z,Z) - (]_—I—ZZ\/qu’a((j )> + 0. (1 g qu‘a((y ))

QErd(x,) = hm Zqz r—lplta: —ps G
Conservation of the charges relates S-matrices with soft photons to S-matrices without them.
| 1 1 , .
Choosing &(z) = — and e(x) = ———  andassuming in‘zj — FZZ‘II — (0 vyields

pi - €t Objective: Derive these formulas using
Z qj— (out|Slin) CFT Ward identities and the map

z’ 2 . Pid between scattering states and CFT
operators we have constructed.
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From CFT physics to Minkowski physics

Starting point: Integrated form of Ward identity Integration region:

s

/ 4’z ()9, (0T {j" (@) X }|0) = (Z gia(z;) — qua(y») orixyo) X =llowlfow)
_ . i j=1 B
LHS RHS

1. Smear locations of operators such that they become creation/annihilation operators in flat space

2. Make a choice of parameter a(x) such that RHS becomes the hard part of Weinberg's theorem

1 cos? p — cos* T

a(x) = lim d%%ﬂ, ————— (i) hard hard .
e (sinT = sinp - &) yields RHS = (out| Q™ (X+4) S — S Q" (X )|in)

a(r)|ze = e()

3. Integrate by parts the LHS o be e away by
""" computing Lienard-
/d3a: Oua(x)(0|T15" (2) X }0) = / LalzHOrT{j# (2) X }|0) Wietchert potentials in AdS

Only radiative parts of the

3 A > : z : current contribute. Can be
— D T4, X D T4 95 X . . .
/i_id ze(z) [ D*(0|T{j-(z) X }|0) + D*(0|T{jz(x)X }|0)] ] arqued again by computing

LW potentials explicitly.
= | de(@) DO @) X} 0) + DT @) X))



N||

_ 2 2 _
/ P’z e(2)D?j; = lim —wg»/dQZq e(q) Oz, ( V2 Qw(ja((j. )) ,
T+

4. The operators appearing in LHS are wg= 0T 1422
soft photon operators according to our map! 9 NG
Spe(2)D?*j- = lim —wz [ d*z,2(§ - ()
/i+ d°xe(2)D"j; —wlqlgo —Wg /d zq€(q) 0z, T 2 2wgaz | -

So LHS corresponds to the insertion of soft charge operators: LHS = (out|QF " (2X4+)S — S Q% " (X-)|in)

5. Putting all the pieces together yields

or simply

Out|QE(X4+)S =S Qp((X-)[in) =0

In order to show Weinberg soft theorems one proceeds as in flat space, but an extra assumption concerning
the radiative modes must be made!

FZZ‘I‘_F — FZE‘I_T_ —



Magnetic asymptotic symmetries from Ward identities

Op O[T (xf)" (2) X }]0) = (Z 90 (z —2i) = ) 9;0% (w — ?/j)) OIT{X}|0)

7=1
Integrate by parts/ \choose

2 / drd®z e(2) [0:(0|T{0; A, () X }0) — 8,(0|T{0; As(x) X }|0)] a(z) = lim [ d°&' 41 ,Coszp ,_COASQTA ~e(2)
7 p—% T (sinT —sinpz - 1')
Use map between
CFT operators and 3 calculate
scattering states
. hard h d :
out| Q3T (21) S — S QY (X)) in) (out|Q37" " (X4) S — S Qa7 (X-)|in)

AN S

(out|Q3,(X4) S = S QY (X-)[in) =0




Some Questions

* Gravity: Scattering states involving gravitons from the CFT perspective.

+ waL(E— ,' 2
a) ~ /(17'(3““‘1/(2 7) (f 1; / d’z I PTSE

q

Soft theorems from Stress tensor Ward identities

BMS4 algebra from a flat limit of AAS/CFT

* IR finite S-matrix:
Relaxing the condition for asymptotic decoupling involves including interactions in our

definition of scattering states. This should yield Faddeev-Kulish asymptotic states and an IR
finite S-matrix in the flat limit.

Thanks!



