
∞-dim Lie algebras & higher spins
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A “Cartan" approach to higher-spin gauge theories: 

• 1987: proposal for a higher-spin algebra in AdS4 

• 1990: procedure to implement its gauging → Vasiliev’s equations 

• 2003: higher-spin algebras and interacting e.o.m. in AdSD

Other recent (and less recent) developments  

• 3D HS algebras → Chern-Simons gauge theories (& matter couplings)

Fradkin, Vasiliev

Vasiliev

Eastwood; Vasiliev

Blencowe (1989); Porkushkin, Vasiliev (1999) & many others…

Boulanger, Skvortsov (2011); Joung, Mkrtchyan (2016)

• HS algebras for mixed symmetry and partially-massless fields



• Long-range HS interactions: 

• in flat-space → trivial S-matrix  

• in AdS → free CFT boundary correlators → “soluble” AdS/CFT 

Higher spins & (A)dS

Andrea Campoleoni - UMONS

Why (massless) HS fields like (A)dS?

May Minkowski still play a role?  

• Is String Theory a broken phase of a HS gauge theory? 

• Models with trivial S-matrix, but non-trivial interactions (& symmetries)? 

Outlook: “non-AdS” holography with higher spins

Weinberg (1964)

Sezgin, Sundell (2002); Klebanov, Polyakov (2002); Maldacena, Zhiboedov (2011) et al.

Skvortsov, Tran, Tsulaia (2018); A.C., Francia, Heissenberg (2017)

see e.g. Ponomarev (2021) 
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HS “isometries” of the vacuum 

• Fronsdal’s gauge transf.: 

• Vacuum-preserving symm.: 

• Solution (in Minkowski): 

•

Higher-spin algebras

Andrea Campoleoni - UMONS

Key ingredient in building HS theories and studying HS holography

What is a HS algebra?

• Poincaré & (A)dS algebras: isometries of the vacuum

Lie algebra on traceless Killing tensors 

Formulae used in Keynote

”Ïµ1···µs = Ò̄(µ1‘µ2···µs) + O(Ï)

1

2.1 Higher-spin “isometries” of the vacuum
sec:isometries

A free massless particle of spin s propagating on a constant-curvature spacetime of any
dimension can be described, e.g., using a symmetric tensor of rank s admitting gauge
transformations of the form

�'µ1···µs = s r̄(µ1
✏µ2···µs) , with ✏µ1···µs�3�

� = 0 . (2.1) free-gauge-fronsdal

This is the field content of Fronsdal’s formulation of the dynamics [83, 84], where r̄ de-
notes the background covariant derivative and indices enclosed between parentheses are
symmetrised with weight one (i.e. dividing by the number of terms used in the symmetri-
sation is understood). To write an action principle, one also has to impose that the field
be doubly traceless, but this does not bring any new condition on the gauge parameter.
Indeed, (2.1) is doubly traceless thanks to the trace constraint on ✏.

Interactions typically bring deformations O(') of the free gauge transformation (2.1).
Still, preserving the vacuum solution 'µ1···µs = 0 only requires that the gauge parameters
be Killing tensors, satisfying

r̄(µ1
✏µ2···µs) = 0 . (2.2) killing

Gauge transformations generated by traceless Killing tensors can thus be interpreted as
global symmetries for particles of any spin. In Minkowski space, the general solution of the
Killing equation (2.2) for traceless tensors takes the simple form

✏µ1···µs�1 =
s�1X

k=0

Mµ1···µs�1|⌫1···⌫kx
⌫1 · · ·x

⌫k , (2.3) sol-killing

where the M ’s are constant so(1, D � 1)-irreducible tensors [85]. Indices in both sets are
manifestly symmetrised, while irreducibility means that these tensors are fully traceless and
satisfy

M(µ1···µs�1|µs)⌫1···⌫k = 0 , 0  k  s� 2 . (2.4)

In (A)dS the number of independent solutions of the Killing equation is the same [86] and
one can characterise them using the same set of tensors as in flat space [87]. As it is manifest
if one solves (2.2) using ambient-space techniques, the M ’s can be collected into a single
two-row irreducible so(2, D� 1) tensor MA1···As�1|B1···Bs�1

[87, 88].5 Its indices An and Bn

are symmetrised and take values in the range {0, . . . , D}, while the tensor is traceless and
satisfies [A: change letter to denote tensors in D + 1 dimensions?]

M(A1···As�1|B1)B2···Bs�1
= 0 . (2.5)

The traceless solutions of the Killing equation form a vector space and one can define a
Lie bracket on it, for instance, by looking at the field-independent part of the commutator of

5
Alternatively, one can describe a particle of spin s using a set of one-forms that can be collected in a field

WA1···As�1|B1···Bs�1 = Wµ
A1···As�1|B1···Bs�1dxµ

transforming irreducibly under so(2, D � 1) (or so(1, D))

and admitting gauge transformations of the form �WA1···As�1|B1···Bs�1 = d✏A1···As�1|B1···Bs�1 + · · · [89].

In this approach, global symmetries are manifestly spanned by two-row irreducible so(2, D � 1) tensors.

This is an example of a general and crucial observation: global symmetries do not depend on the particular

formulation of the dynamics one chooses.
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Higher-spin algebras
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Vector space of traceless Killing tensors:

Formulae used in Keynote
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Eastwood-Vasiliev algebras in any D: non-Abelian Lie algebras        
on V including a so(2,D−1) subalgebra 

Higher-spin algebras
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V ƒ • ü ü ü ü · · ·

1

Fradkin, Vasiliev (1987); 
Eastwood (2002);  
Segal (2002); 
Vasiliev (2003)
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Eastwood-Vasiliev algebras in any D: non-Abelian Lie algebras        
on V including a so(2,D−1) subalgebra 

Higher-spin algebras
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so(2,D−1): isometries of AdSD & conformal symmetries (in D−1) 



Notable so(2,D−1) Inönü-Wigner contractions

Andrea Campoleoni - UMONS

so(2,D−1)
AdS isometries

Λ → 0
iso(1,D−1)

Minkowski isometries



Notable so(2,D−1) Inönü-Wigner contractions

Andrea Campoleoni - UMONS

so(2,D−1)
AdS isometries

Λ → 0
iso(1,D−1)

Minkowski isometries

conformal algebra
c → 0

conformal Carroll 
algebra



Notable so(2,D−1) Inönü-Wigner contractions

Andrea Campoleoni - UMONS

so(2,D−1)

gcaD−1

AdS isometries
Λ → 0

iso(1,D−1)
Minkowski isometries

conformal algebra
c → 0

conformal Carroll 
algebra

conformal Galilei 
algebra

c → ∞

What about higher-spin algebras?



Goals & strategy / hypotheses 

Andrea Campoleoni - UMONS

Goal: classify Lie algebras defined on the vector space V 
(traceless Killing tensors) that 

1. contain a Poincaré subalgebra, iso(1,D−1) 

2. contain a conformal Galilei subalgebra, gcaD−1

…and discuss their properties

Strategy: look for coset algebras, obtained by quotienting out an 
ideal from the universal enveloping algebras of iso(1,D−1) or gcaD−1 
(bonus: "good" Lorentz transf. for free) Eastwood (2002)
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Andrea Campoleoni - UMONS

Goal: classify Lie algebras defined on the vector space V 
(traceless Killing tensors) that 

1. contain a Poincaré subalgebra, iso(1,D−1) 

2. contain a conformal Galilei subalgebra, gcaD−1

…and discuss their properties

Strategy: look for coset algebras, obtained by quotienting out an 
ideal from the universal enveloping algebras of iso(1,D−1) or gcaD−1 
(bonus: "good" Lorentz transf. for free)

partial classi
fication, still

 

with interestin
g examples!

Eastwood (2002)



HS algebras in AdSD

Conformal HS algebras in D−1 dimensions



Coset construction of HS algebras
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so(2,D−1) algebra:

Quadratic products of the generators

Formulae used in Keynote
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V ƒ • ü ü ü ü · · ·

JA(B § JC)D ≠ traces ≥

1

representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product

JAB � JCD ⌘
1

2
{JAB, JCD} =

1

2
(JABJCD + JCDJAB) (2.11)

into8

JA(B � JC)D ⇠ , J[AB � JCD] ⇠ , (2.12) products

where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
�

2

D + 1
⌘̃AB C2 ⇠ , IABCD ⌘ J[AB � JCD] ⇠ , (2.13) rel_anyD:ideal

where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir

C2 ⌘
1

2
JAB � J

BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,

�
3

2
IABCDJ

CD
⇠

D � 1

D + 1

✓
C2 +

(D + 1)(D � 3)

4
id

◆
JAB , (2.16) I-C2

8
In general, the product of two antisymmetric tensors would contain also a “hook” Young diagram with

a single box in the second row. This is however absent in the product of two identical tensors as a result of

the symmetry under exchanges of the factors.
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case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,
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vanish [87]. Indeed, in flat space the divergence constraint also imply ⇤ ✏µ1···µs�1 = 0 and
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One can eventually rearrange the independent components in the tensors MA1···As�1|B1···Bs�1
,

MA1···As�3|B1···Bs�3
, etc.,7 so that the vector space of global symmetries corresponds to the

direct sum of those associated with the individual particles contained in the reducible spec-
trum. This is not always the case though: in section 6 we shall discuss other examples with
reducible, but non-unitary, spectra that lead to global symmetries with a different struc-
ture even in flat space. Partially-massless fields, discussed in section 2.3, actually provide
the simplest example of global symmetries that cannot be interpreted in terms of those of
massless fields with given helicity.

2.2 Global symmetries for massless fields
sec:global

We now focus on the global symmetries of gauge theories involving only Fronsdal’s fields
in AdSD and on their construction as quotients of the universal enveloping algebra (UEA)
of so(2, D � 1). For arbitrary values of the space-time dimension, there exists a unique
quotient of the UEA of the isometries of the vacuum that gives a vector space appropriate
to describe the global symmetries of massless fields. When D = 3 and D = 5 one can
instead obtain a one-parameter family of non-isomorphic higher-spin algebras. We discuss
these two cases in detail and, in particular, we bridge the gap between the customary
presentation of three-dimensional higher-spin algebras and that applying to any dimension.

2.2.1 Arbitrary space-time dimensions
sec:global_anyD

The isometries of the AdSD background are given by the so(2, D � 1) algebra

[JAB , JCD] = ⌘̃AC JBD � ⌘̃BC JAD � ⌘̃AD JBC + ⌘̃BD JAC , (2.10) g-commutators

where the JAB are antisymmetric tensors with A,B 2 {0, . . . , D}, while ⌘̃AB denotes the
matrix diag(�,+, . . . ,+,�) that we shall also employ in the following to raise and lower
indices. For simplicity, we shall often use the shorthand g ⌘ so(2, D � 1).

The Eastwood-Vasiliev higher-spin algebra hsD is a coset algebra obtained by quo-
tienting the UEA U(g) by the two-sided ideal hIi ⌘ U(g) ? I ? U(g), where ? denotes
the associative product on the UEA (that we shall omit in the following), while I will be
specified below. We recall that U(g) is obtained by considering tensor products of the JAB

modulo the relation (2.10) and, thanks to the Poincaré-Birkhoff-Witt theorem, a basis of
7
The branching of the sum of these so(D+1) tensors into so(D) irreducible representations tallies with the

branching of the gl(D) tensors entering the general solution into their fully-traceless, so(D), components.

Notice also that, thanks to the conditions (2.9a) and (2.9b), the problem manifestly coincides with the

analysis of the global symmetries of a Fierz system involving traceful fields.
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further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product
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(JABJCD + JCDJAB) (2.11)

into8
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where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
�

2

D + 1
⌘̃AB C2 ⇠ , IABCD ⌘ J[AB � JCD] ⇠ , (2.13) rel_anyD:ideal

where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir
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BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,
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Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient
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In general, the product of two antisymmetric tensors would contain also a “hook” Young diagram with

a single box in the second row. This is however absent in the product of two identical tensors as a result of

the symmetry under exchanges of the factors.
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2
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1
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vanish [87]. Indeed, in flat space the divergence constraint also imply ⇤ ✏µ1···µs�1 = 0 and

@ · ✏µ1···µs�2 =
s�1X

k=0

kMµ1···µs�2�|⌫1···⌫k�1

�
x
⌫1 · · ·x

⌫k�1 , (2.9a) divergence

⇤ ✏µ1···µs�1 =
s�1X

k=0

✓
k

2

◆
Mµ1···µs�1|⌫1···⌫k�2�

�
x
⌫1 · · ·x

⌫k�2 . (2.9b) trace

One can eventually rearrange the independent components in the tensors MA1···As�1|B1···Bs�1
,

MA1···As�3|B1···Bs�3
, etc.,7 so that the vector space of global symmetries corresponds to the

direct sum of those associated with the individual particles contained in the reducible spec-
trum. This is not always the case though: in section 6 we shall discuss other examples with
reducible, but non-unitary, spectra that lead to global symmetries with a different struc-
ture even in flat space. Partially-massless fields, discussed in section 2.3, actually provide
the simplest example of global symmetries that cannot be interpreted in terms of those of
massless fields with given helicity.

2.2 Global symmetries for massless fields
sec:global

We now focus on the global symmetries of gauge theories involving only Fronsdal’s fields
in AdSD and on their construction as quotients of the universal enveloping algebra (UEA)
of so(2, D � 1). For arbitrary values of the space-time dimension, there exists a unique
quotient of the UEA of the isometries of the vacuum that gives a vector space appropriate
to describe the global symmetries of massless fields. When D = 3 and D = 5 one can
instead obtain a one-parameter family of non-isomorphic higher-spin algebras. We discuss
these two cases in detail and, in particular, we bridge the gap between the customary
presentation of three-dimensional higher-spin algebras and that applying to any dimension.

2.2.1 Arbitrary space-time dimensions
sec:global_anyD

The isometries of the AdSD background are given by the so(2, D � 1) algebra

[JAB , JCD] = ⌘̃AC JBD � ⌘̃BC JAD � ⌘̃AD JBC + ⌘̃BD JAC , (2.10) g-commutators

where the JAB are antisymmetric tensors with A,B 2 {0, . . . , D}, while ⌘̃AB denotes the
matrix diag(�,+, . . . ,+,�) that we shall also employ in the following to raise and lower
indices. For simplicity, we shall often use the shorthand g ⌘ so(2, D � 1).

The Eastwood-Vasiliev higher-spin algebra hsD is a coset algebra obtained by quo-
tienting the UEA U(g) by the two-sided ideal hIi ⌘ U(g) ? I ? U(g), where ? denotes
the associative product on the UEA (that we shall omit in the following), while I will be
specified below. We recall that U(g) is obtained by considering tensor products of the JAB

modulo the relation (2.10) and, thanks to the Poincaré-Birkhoff-Witt theorem, a basis of
7
The branching of the sum of these so(D+1) tensors into so(D) irreducible representations tallies with the

branching of the gl(D) tensors entering the general solution into their fully-traceless, so(D), components.

Notice also that, thanks to the conditions (2.9a) and (2.9b), the problem manifestly coincides with the

analysis of the global symmetries of a Fierz system involving traceful fields.
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so(2,2) algebra:

Ideal to be factored out:

Still, better to get rid of     :

where a, b 2 {0, 1, 2} and mab can be dualised into

j
a
⌘

1

2
"
abc

mbc , mab = �"abcj
c (2.23) dual-j

using the Levi-Civita tensor. For the latter we adopt the convention "
012 = 1 and we use

the metric ⌘ = (�,+,+) to raise or lower indices. In this basis the commutation relations
read

[ja, jb] = "abcj
c
, [ja, pb] = "abcp

c
, [pa, pb] = "abcj

c
. (2.24)

One can then rearrange the components of pa and ja into the generators

Pm ⌘ (p0 � p1, p2, p0 + p1) , Lm ⌘ (j0 � j1, j2, j0 + j1) , (2.25) p->P

where m 2 {�1, 0, 1}. This gives the algebra

[Lm, Ln] = (m�n)Lm+n , [Lm, Pn] = (m�n)Pm+n , [Pm, Pn] = (m�n)Lm+n . (2.26) comm:lorentz

One can eventually identify the two orthogonal copies of sl (2,R) by introducing the linear
combinations

Lm =
1

2
(Lm + Pm) , L̄m =

1

2
(Lm � Pm) , (2.27)

verifying

[Lm,Ln] = (m� n)Lm+n , [L̄m, L̄n] = (m� n)L̄m+n , [Lm, L̄n] = 0 . (2.28) sl2

Notice that the change of basis leading from (2.26) to (2.28) is not unique because of the
automorphism Lm ! �L�m and L̄m ! �L̄�m. The definition we gave is usually employed
in the study of non-relativistic limits of so(2, 2), while using the automorphism one can
recover that employed in the study of ultra-relativistic limits (see section 3). The quadratic
Casimir operator of so(2, 2) introduced in (2.14) is then expressed in terms of the Casimir
operators of the two sl (2,R) algebras as

C2 = L
2 + P

2 = 2
�
L
2 + L̄

2
�
, (2.29) C2_3D

where we used the inverse of the sl (2,R) Killing metric �mn to contract indices — e.g.,
L
2 = �

mn
LmLn and L

2 = �
mn

LmLn — with the convention

�mn =

0

B@
0 0 �2

0 1 0

�2 0 0

1

CA . (2.30) sl2-killing

We now move to the construction of higher-spin algebras, following the approach of
section 2.2.1. The element IAB defined in eq. (2.13) must be factored out from the UEA even
when D = 3 in order to eliminate the traces of all two-row Young diagrams appearing in the
decomposition of products of so(2, 2) generators. It carries nine independent components,
that can be conveniently presented as follows

Iab � ⌘ab I33 = p(apb) � j(ajb) ⇠ 0 , (2.31a)

�2 Ia
3 = "

abc (pbjc + jcpb) ⇠ 0 , (2.31b)
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where a, b 2 {0, 1, 2} and we recall that ⇠ means that the identification is taking place in
the ideal. Being traceful, the first expression contains six independent components, while
the second gives the remaining three. After performing the change of basis (2.25), we can
express those relations as

{Pm, Pn}� {Lm, Ln} ⇠ 0 , (2.32a) rel_3D:ideal_1

{Pm, Ln}� {Lm, Pn} ⇠ 0 , (2.32b) rel_3D:ideal_2

where we can take m � n in the first expression and we can consider the last expression,
e.g., only for m > n. When written in terms of the L and L̄ generators, they turn into3D_ideal_LbarL

{Lm, L̄n}+ {Ln, L̄m} ⇠ 0 , (2.33a)

{Lm, L̄n}� {Ln, L̄m} ⇠ 0 , (2.33b)

where the first expression is again considered for m � n and the last expression for m > n.
By combining the above relations, one obtains

IAB ⇠ 0 ) LmL̄n ⇠ 0 , (2.34) rel_3D:LLbar

with no restrictions on m,n and where we have omitted the anticommutator since the two
copies of sl (2,R) commute. This explains why, in the construction of higher-spin algebras
in three dimensions, it is enough to consider the direct sum of two copies of the UEA of
sl (2,R) (see, e.g., [15] and the review [97]): factoring out IAB sets all mixed products to
zero.9

On the other hand, contrary to the generic case, in three dimensions we do not need
to factor out the element IABCD. One can indeed dualise it into a singlet, that would fit in
the vector space of global symmetries of massless particles. Actually, its dualisation gives
the other independent quadratic Casimir of so(2, 2):

W ⌘
1

8
"
ABCD

IABCD = j
a
pa = �

mn
LmPn = L

2
� L̄

2
. (2.35) W_3D

Factoring out IAB then implies a constraint on W via eq. (2.17), that fixes C4 as a function
of C2 only. Substituting the result in the expansion of W 2 = 4! IABCDI

ABCD one obtains

W
2
⇠

1

4
(C2)

2
. (2.36) rel_3D:W

Imposing IABCD = 1
3 "ABCDW ⇠ 0 as in section 2.2.1 thus implies C2 ⇠ 0 consistently

with the D-dimensional result (2.20). However, when D = 3, we have the option to work
only with the weaker condition (2.36) that leaves the quadratic Casimir C2 free. For the
latter, one can eventually require

C2 ⇠
�
2
� 1

2
id (2.37) rel_3D:C2

9
An alternative construction, in which mixed products of the L and L̄ generators are allowed, leads to

an extended algebra dubbed “large AdS higher-spin algebra” [51]. Similar extended algebras also appear in

the description of partially-massless fields in three dimensions [18].
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the second gives the remaining three. After performing the change of basis (2.25), we can
express those relations as

{Pm, Pn}� {Lm, Ln} ⇠ 0 , (2.32a) rel_3D:ideal_1

{Pm, Ln}� {Lm, Pn} ⇠ 0 , (2.32b) rel_3D:ideal_2

where we can take m � n in the first expression and we can consider the last expression,
e.g., only for m > n. When written in terms of the L and L̄ generators, they turn into3D_ideal_LbarL

{Lm, L̄n}+ {Ln, L̄m} ⇠ 0 , (2.33a)

{Lm, L̄n}� {Ln, L̄m} ⇠ 0 , (2.33b)

where the first expression is again considered for m � n and the last expression for m > n.
By combining the above relations, one obtains

IAB ⇠ 0 ) LmL̄n ⇠ 0 , (2.34) rel_3D:LLbar

with no restrictions on m,n and where we have omitted the anticommutator since the two
copies of sl (2,R) commute. This explains why, in the construction of higher-spin algebras
in three dimensions, it is enough to consider the direct sum of two copies of the UEA of
sl (2,R) (see, e.g., [15] and the review [97]): factoring out IAB sets all mixed products to
zero.9

On the other hand, contrary to the generic case, in three dimensions we do not need
to factor out the element IABCD. One can indeed dualise it into a singlet, that would fit in
the vector space of global symmetries of massless particles. Actually, its dualisation gives
the other independent quadratic Casimir of so(2, 2):

W ⌘
1

8
"
ABCD

IABCD = j
a
pa = �

mn
LmPn = L

2
� L̄

2
. (2.35) W_3D

Factoring out IAB then implies a constraint on W via eq. (2.17), that fixes C4 as a function
of C2 only. Substituting the result in the expansion of W 2 = 4! IABCDI

ABCD one obtains

W
2
⇠

1

4
(C2)

2
. (2.36) rel_3D:W

Imposing IABCD = 1
3 "ABCDW ⇠ 0 as in section 2.2.1 thus implies C2 ⇠ 0 consistently

with the D-dimensional result (2.20). However, when D = 3, we have the option to work
only with the weaker condition (2.36) that leaves the quadratic Casimir C2 free. For the
latter, one can eventually require

C2 ⇠
�
2
� 1

2
id (2.37) rel_3D:C2

9
An alternative construction, in which mixed products of the L and L̄ generators are allowed, leads to

an extended algebra dubbed “large AdS higher-spin algebra” [51]. Similar extended algebras also appear in

the description of partially-massless fields in three dimensions [18].
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Formulae used in Keynote

”Ïµ1···µs = Ò̄(µ1‘µ2···µs) + O(Ï)

Mµ ≥ Mµ|‹ ≥

Mµ‹ ≥ Mµ‹|– ≥ Mµ‹|–— ≥
¸ ˚˙ ˝

V ƒ • ü ü ü ü · · ·

JA(B § JC)D ≠ traces ≥

C2 ©
1
2 JAB § JBA

≥ •

hsD = U(so(2, D ≠ 1))
ÈIAB ü IABCDÍ

∆ C2 ≥ ≠
(D + 1)(D ≠ 3)

4 id

C2 = 2
1
L

2 + L̄2
2

≥
⁄2

≠ 1
2 id

1

Not factorising             gives a one-parameter family of HS algebras

representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product

JAB � JCD ⌘
1

2
{JAB, JCD} =

1

2
(JABJCD + JCDJAB) (2.11)

into8

JA(B � JC)D ⇠ , J[AB � JCD] ⇠ , (2.12) products

where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
�

2

D + 1
⌘̃AB C2 ⇠ , IABCD ⌘ J[AB � JCD] ⇠ , (2.13) rel_anyD:ideal

where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir

C2 ⌘
1

2
JAB � J

BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,

�
3

2
IABCDJ

CD
⇠

D � 1

D + 1

✓
C2 +

(D + 1)(D � 3)

4
id

◆
JAB , (2.16) I-C2

8
In general, the product of two antisymmetric tensors would contain also a “hook” Young diagram with

a single box in the second row. This is however absent in the product of two identical tensors as a result of

the symmetry under exchanges of the factors.
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hs3[⁄] = id ü W ü hs[⁄] ü hs[⁄]

1

with

in order to remove multiplicities from the spectrum, that is to identify, e.g., the elements
JAB and C2JAB in the UEA. This condition also guarantees that products of W with other
elements in the UEA do not introduce new generators since the relations (2.33) imply

WLm ⇠
1

2
C2Lm , W L̄m ⇠ �

1

2
C2L̄m . (2.38)

Eventually, eq. (2.37) leads to the one-parameter family of higher-spin algebras that has
been considered in the literature on massless fields in three dimensions [16, 35, 36, 97].

The conditions (2.34) and (2.37) imply that these algebras are obtained by evaluating
the UEA of so(2, 2) on a reducible module built upon two sl (2,R) irreps with highest-weight
vectors ��h, h̄

↵
so(2,2)

= |hisl(2,R) ⌦
��h̄
↵
sl(2,R) (2.39)

with conformal dimensions h = h̄ = h± = 1
2 (1± �) (or from their conjugate repre-

sentations) [25]. According to the decompositions (2.29) and (2.35), on a generic vec-
tor in this module the Casimir operators C2 = 2(L2 + L̄

2) = �2�1
2 (1 ⌦ 0̄ + 0 ⌦ 1̄) and

W = L
2
� L̄

2 = �2�1
4 (1⌦ 0̄� 0⌦ 1̄) act as

1

2
C2

��h, h̄
↵
=
�
L
2
|hi
�
⌦
�
L̄
2
��h̄
↵�

=
�
2
� 1

4

��h, h̄
↵
, (2.40a)

W
��h, h̄

↵
=
�
L
2
|hi
�
⌦
�
�L̄

2
��h̄
↵�

=
�
2
� 1

4
⌘
��h, h̄

↵
, (2.40b)

where we introduced the twist operator ⌘ reversing the sign of one copy of sl (2,R) while
leaving the other untouched. Of course, ⌘2 = id which respects (2.36). This leads to the
presentation of the one-parameter family of higher-spin algebras as

hs3[�] = id � ⌘ � hs[�]� hs[�] , (2.41)

where hs[�] is defined as

1� hs[�] =
U(sl (2,R))D
C2 �

�2�1
4 1

E , (2.42) hs[lambda]_def

where C2 denotes the sl (2,R) Casimir operator (say L
2 or L̄2). When � = N 2 N its eigen-

value corresponds to that of a finite-dimensional irreducible representation and a further
infinite-dimensional ideal appears. Factoring it out leads to the sl (N,R) algebra, that can
thus be interpreted as a higher-spin algebra involving a finite number of fields.

It is worth revisiting the previous construction in the finite-dimensional case, where it
becomes particularly neat. The absence of mixed products of L and L̄ means that one has
to consider so(2, 2) representations of the form

Lm =

 
lm 0

0 0

!
, L̄m =

 
0 0

0 l̄m

!
, (2.43)

where, a priori, lm and l̄m might be two different finite-dimensional representations of the
sl (2,R) algebra. If this is the case, however, C2 will not be a multiple of the identity (which
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where a, b 2 {0, 1, 2} and we recall that ⇠ means that the identification is taking place in
the ideal. Being traceful, the first expression contains six independent components, while
the second gives the remaining three. After performing the change of basis (2.25), we can
express those relations as

{Pm, Pn}� {Lm, Ln} ⇠ 0 , (2.32a) rel_3D:ideal_1

{Pm, Ln}� {Lm, Pn} ⇠ 0 , (2.32b) rel_3D:ideal_2

where we can take m � n in the first expression and we can consider the last expression,
e.g., only for m > n. When written in terms of the L and L̄ generators, they turn into3D_ideal_LbarL

{Lm, L̄n}+ {Ln, L̄m} ⇠ 0 , (2.33a)

{Lm, L̄n}� {Ln, L̄m} ⇠ 0 , (2.33b)

where the first expression is again considered for m � n and the last expression for m > n.
By combining the above relations, one obtains

IAB ⇠ 0 ) LmL̄n ⇠ 0 , (2.34) rel_3D:LLbar

with no restrictions on m,n and where we have omitted the anticommutator since the two
copies of sl (2,R) commute. This explains why, in the construction of higher-spin algebras
in three dimensions, it is enough to consider the direct sum of two copies of the UEA of
sl (2,R) (see, e.g., [15] and the review [97]): factoring out IAB sets all mixed products to
zero.9

On the other hand, contrary to the generic case, in three dimensions we do not need
to factor out the element IABCD. One can indeed dualise it into a singlet, that would fit in
the vector space of global symmetries of massless particles. Actually, its dualisation gives
the other independent quadratic Casimir of so(2, 2):

W ⌘
1

8
"
ABCD

IABCD = j
a
pa = �

mn
LmPn = L

2
� L̄

2
. (2.35) W_3D

Factoring out IAB then implies a constraint on W via eq. (2.17), that fixes C4 as a function
of C2 only. Substituting the result in the expansion of W 2 = 4! IABCDI

ABCD one obtains

W
2
⇠

1

4
(C2)

2
. (2.36) rel_3D:W

Imposing IABCD = 1
3 "ABCDW ⇠ 0 as in section 2.2.1 thus implies C2 ⇠ 0 consistently

with the D-dimensional result (2.20). However, when D = 3, we have the option to work
only with the weaker condition (2.36) that leaves the quadratic Casimir C2 free. For the
latter, one can eventually require

C2 ⇠
�
2
� 1

2
id (2.37) rel_3D:C2

9
An alternative construction, in which mixed products of the L and L̄ generators are allowed, leads to

an extended algebra dubbed “large AdS higher-spin algebra” [51]. Similar extended algebras also appear in

the description of partially-massless fields in three dimensions [18].
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Factoring out IAB then implies a constraint on W via eq. (2.17), that fixes C4 as a function
of C2 only. Substituting the result in the expansion of W 2 = 4! IABCDI

ABCD one obtains
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Imposing IABCD = 1
3 "ABCDW ⇠ 0 as in section 2.2.1 thus implies C2 ⇠ 0 consistently

with the D-dimensional result (2.20). However, when D = 3, we have the option to work
only with the weaker condition (2.36) that leaves the quadratic Casimir C2 free. For the
latter, one can eventually require

C2 ⇠
�
2
� 1

2
id (2.37) rel_3D:C2

9
An alternative construction, in which mixed products of the L and L̄ generators are allowed, leads to

an extended algebra dubbed “large AdS higher-spin algebra” [51]. Similar extended algebras also appear in

the description of partially-massless fields in three dimensions [18].
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in order to remove multiplicities from the spectrum, that is to identify, e.g., the elements
JAB and C2JAB in the UEA. This condition also guarantees that products of W with other
elements in the UEA do not introduce new generators since the relations (2.33) imply

WLm ⇠
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2
C2Lm , W L̄m ⇠ �

1

2
C2L̄m . (2.38)

Eventually, eq. (2.37) leads to the one-parameter family of higher-spin algebras that has
been considered in the literature on massless fields in three dimensions [16, 35, 36, 97].

The conditions (2.34) and (2.37) imply that these algebras are obtained by evaluating
the UEA of so(2, 2) on a reducible module built upon two sl (2,R) irreps with highest-weight
vectors ��h, h̄

↵
so(2,2)

= |hisl(2,R) ⌦
��h̄
↵
sl(2,R) (2.39)

with conformal dimensions h = h̄ = h± = 1
2 (1± �) (or from their conjugate repre-

sentations) [25]. According to the decompositions (2.29) and (2.35), on a generic vec-
tor in this module the Casimir operators C2 = 2(L2 + L̄

2) = �2�1
2 (1 ⌦ 0̄ + 0 ⌦ 1̄) and

W = L
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� L̄
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where we introduced the twist operator ⌘ reversing the sign of one copy of sl (2,R) while
leaving the other untouched. Of course, ⌘2 = id which respects (2.36). This leads to the
presentation of the one-parameter family of higher-spin algebras as

hs3[�] = id � ⌘ � hs[�]� hs[�] , (2.41)

where hs[�] is defined as

1� hs[�] =
U(sl (2,R))D
C2 �

�2�1
4 1

E , (2.42) hs[lambda]_def

where C2 denotes the sl (2,R) Casimir operator (say L
2 or L̄2). When � = N 2 N its eigen-

value corresponds to that of a finite-dimensional irreducible representation and a further
infinite-dimensional ideal appears. Factoring it out leads to the sl (N,R) algebra, that can
thus be interpreted as a higher-spin algebra involving a finite number of fields.

It is worth revisiting the previous construction in the finite-dimensional case, where it
becomes particularly neat. The absence of mixed products of L and L̄ means that one has
to consider so(2, 2) representations of the form

Lm =

 
lm 0

0 0

!
, L̄m =

 
0 0

0 l̄m

!
, (2.43)

where, a priori, lm and l̄m might be two different finite-dimensional representations of the
sl (2,R) algebra. If this is the case, however, C2 will not be a multiple of the identity (which
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is possible because the module is not irreducible). To fullfill the condition (2.37) one thus
has to work with the same sl (2,R) representation in both blocks, lm = l̄m. Chosing that
of dimension N , the Casimir operators take the form

C2 =
N

2
� 1

2

 
1 0

0 1

!
, W =

N
2
� 1

4

 
1 0

0 �1

!
, (2.44)

where W manifestly satisfies the relation (2.36) imposed by IAB ⇠ 0.

2.2.3 Five dimensions

The five-dimensional case is also special compared to the generic one. Indeed, it is possible
to evaluate the UEA on a module different from the scalar singleton, while keeping the
same set of generators: this leads to a one-parameter family of higher-spin algebras in five
dimensions too [11, 33] (see also [38, 98]). This is most conveniently seen at the level of the
complex algebra, where one can take the quotient of the UEA of D3 by the one-parameter
ideal hI�

i,
hs5[�] = U(D3)/hI

�
i , (2.45)

where I
� = IAB � I

�
ABCD with

IAB ⌘ JC(AJB)
C
�

1

3
⌘̃AB C2 , (2.46)

I
�
ABCD ⌘ J[ABJCD] � i

�

6
"ABCDEFJ

EF
. (2.47)

As in three dimensions, one still has to factorise IAB in order to eliminate the traces of
products of the JAB associated with two-row Young diagrams. The second part of the ideal
involves instead the dualisation of Young diagrams with four rows into two-row Young
diagrams. These steps fix the value of the higher-order Casimir operators as functions
of the quadratic one as in generic dimensions [11]. On the other hand, the value of the
quadratic Casimir is not fixed as in (2.20) since now

0 ⇠ �
3

4
I
�
ABCD I

�ABCD = C4 � (C2)
2 + 2(�2

� 3)C2 . (2.48)

This relation combined with (2.17) implies however

C2 ⇠ 3(�2
� 1) id . (2.49)

When � = M+1
2 with M > 2 the higher-spin algebra develops an infinite-dimensional

ideal which, upon further factorisation, gives a finite-dimensional truncation describing only
fields of spin 1  s  M �1.10 The existence of a one-parameter family of higher-spin alge-
bras is also explained by the isomorphism so(2, 4) ' su(2, 2) (' sl (4,R) up to signature).

10
The case M = 4 has been studied in detail in [99] and used to couple a spin-two and a spin-three fields

via a Chern-Simons action. Finite-dimensional higher-spin algebras can thus lead to interesting topological

systems, while they are not expected to emerge in gauge theories describing the unitary propagation of

higher-spin particles, since they do not satisfy the so called admissibility condition, as first noticed in [38].
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where a, b 2 {0, 1, 2} and we recall that ⇠ means that the identification is taking place in
the ideal. Being traceful, the first expression contains six independent components, while
the second gives the remaining three. After performing the change of basis (2.25), we can
express those relations as

{Pm, Pn}� {Lm, Ln} ⇠ 0 , (2.32a) rel_3D:ideal_1

{Pm, Ln}� {Lm, Pn} ⇠ 0 , (2.32b) rel_3D:ideal_2

where we can take m � n in the first expression and we can consider the last expression,
e.g., only for m > n. When written in terms of the L and L̄ generators, they turn into3D_ideal_LbarL

{Lm, L̄n}+ {Ln, L̄m} ⇠ 0 , (2.33a)

{Lm, L̄n}� {Ln, L̄m} ⇠ 0 , (2.33b)

where the first expression is again considered for m � n and the last expression for m > n.
By combining the above relations, one obtains

IAB ⇠ 0 ) LmL̄n ⇠ 0 , (2.34) rel_3D:LLbar

with no restrictions on m,n and where we have omitted the anticommutator since the two
copies of sl (2,R) commute. This explains why, in the construction of higher-spin algebras
in three dimensions, it is enough to consider the direct sum of two copies of the UEA of
sl (2,R) (see, e.g., [15] and the review [97]): factoring out IAB sets all mixed products to
zero.9

On the other hand, contrary to the generic case, in three dimensions we do not need
to factor out the element IABCD. One can indeed dualise it into a singlet, that would fit in
the vector space of global symmetries of massless particles. Actually, its dualisation gives
the other independent quadratic Casimir of so(2, 2):
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"
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a
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mn
LmPn = L

2
� L̄

2
. (2.35) W_3D

Factoring out IAB then implies a constraint on W via eq. (2.17), that fixes C4 as a function
of C2 only. Substituting the result in the expansion of W 2 = 4! IABCDI

ABCD one obtains

W
2
⇠

1

4
(C2)

2
. (2.36) rel_3D:W

Imposing IABCD = 1
3 "ABCDW ⇠ 0 as in section 2.2.1 thus implies C2 ⇠ 0 consistently

with the D-dimensional result (2.20). However, when D = 3, we have the option to work
only with the weaker condition (2.36) that leaves the quadratic Casimir C2 free. For the
latter, one can eventually require

C2 ⇠
�
2
� 1

2
id (2.37) rel_3D:C2

9
An alternative construction, in which mixed products of the L and L̄ generators are allowed, leads to

an extended algebra dubbed “large AdS higher-spin algebra” [51]. Similar extended algebras also appear in

the description of partially-massless fields in three dimensions [18].
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in order to remove multiplicities from the spectrum, that is to identify, e.g., the elements
JAB and C2JAB in the UEA. This condition also guarantees that products of W with other
elements in the UEA do not introduce new generators since the relations (2.33) imply
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Eventually, eq. (2.37) leads to the one-parameter family of higher-spin algebras that has
been considered in the literature on massless fields in three dimensions [16, 35, 36, 97].
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where C2 denotes the sl (2,R) Casimir operator (say L
2 or L̄2). When � = N 2 N its eigen-

value corresponds to that of a finite-dimensional irreducible representation and a further
infinite-dimensional ideal appears. Factoring it out leads to the sl (N,R) algebra, that can
thus be interpreted as a higher-spin algebra involving a finite number of fields.

It is worth revisiting the previous construction in the finite-dimensional case, where it
becomes particularly neat. The absence of mixed products of L and L̄ means that one has
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Lm =

 
lm 0

0 0

!
, L̄m =

 
0 0

0 l̄m

!
, (2.43)

where, a priori, lm and l̄m might be two different finite-dimensional representations of the
sl (2,R) algebra. If this is the case, however, C2 will not be a multiple of the identity (which
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been considered in the literature on massless fields in three dimensions [16, 35, 36, 97].
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is possible because the module is not irreducible). To fullfill the condition (2.37) one thus
has to work with the same sl (2,R) representation in both blocks, lm = l̄m. Chosing that
of dimension N , the Casimir operators take the form
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where W manifestly satisfies the relation (2.36) imposed by IAB ⇠ 0.

2.2.3 Five dimensions

The five-dimensional case is also special compared to the generic one. Indeed, it is possible
to evaluate the UEA on a module different from the scalar singleton, while keeping the
same set of generators: this leads to a one-parameter family of higher-spin algebras in five
dimensions too [11, 33] (see also [38, 98]). This is most conveniently seen at the level of the
complex algebra, where one can take the quotient of the UEA of D3 by the one-parameter
ideal hI�

i,
hs5[�] = U(D3)/hI

�
i , (2.45)

where I
� = IAB � I

�
ABCD with

IAB ⌘ JC(AJB)
C
�

1

3
⌘̃AB C2 , (2.46)

I
�
ABCD ⌘ J[ABJCD] � i

�

6
"ABCDEFJ

EF
. (2.47)

As in three dimensions, one still has to factorise IAB in order to eliminate the traces of
products of the JAB associated with two-row Young diagrams. The second part of the ideal
involves instead the dualisation of Young diagrams with four rows into two-row Young
diagrams. These steps fix the value of the higher-order Casimir operators as functions
of the quadratic one as in generic dimensions [11]. On the other hand, the value of the
quadratic Casimir is not fixed as in (2.20) since now

0 ⇠ �
3

4
I
�
ABCD I

�ABCD = C4 � (C2)
2 + 2(�2

� 3)C2 . (2.48)

This relation combined with (2.17) implies however

C2 ⇠ 3(�2
� 1) id . (2.49)

When � = M+1
2 with M > 2 the higher-spin algebra develops an infinite-dimensional

ideal which, upon further factorisation, gives a finite-dimensional truncation describing only
fields of spin 1  s  M �1.10 The existence of a one-parameter family of higher-spin alge-
bras is also explained by the isomorphism so(2, 4) ' su(2, 2) (' sl (4,R) up to signature).

10
The case M = 4 has been studied in detail in [99] and used to couple a spin-two and a spin-three fields

via a Chern-Simons action. Finite-dimensional higher-spin algebras can thus lead to interesting topological

systems, while they are not expected to emerge in gauge theories describing the unitary propagation of

higher-spin particles, since they do not satisfy the so called admissibility condition, as first noticed in [38].
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Ideal:

Again, no need to factor out 

representatives is given by symmetrised products of the generators (for more details and
further references see, e.g., [11, 33]). Symmetrised products of the JAB are typically re-
ducible under permutations of their indices. For instance, at the quadratic level one can
decompose a generic symmetrised product
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2
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2
(JABJCD + JCDJAB) (2.11)

into8

JA(B � JC)D ⇠ , J[AB � JCD] ⇠ , (2.12) products

where Young diagrams characterise here gl(D+1) irreducible components, while curly (resp.
square) brackets indicate a symmetrisation (resp. antisymmetrisation) over the indices with
the same conventions as in (2.1).

According to the discussion in section 2.1, the traceless part of the first combination
in (2.12) has the right structure to describe the global symmetries of a massless spin-three
field, while its trace and the fully antisymmetric product do not fit into the vector space
of global symmetries of any Fronsdal’s field. As a result, one has to eliminate them from
the set of generators and this is achieved by building the ideal out of a I = IAB � IABCD

comprising the following two parts:

IAB ⌘ JC(A � JB)
C
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D + 1
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where, differently from (2.12), here and in the rest of the paper Young diagrams identify
o(D + 1) irreducible components, i.e. ⌘AB

IAB = 0, while C2 is the quadratic Casimir
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2
JAB � J

BA
. (2.14) C2

Notice that one could substitute the � in eqs. (2.13) and (2.14) with a simple tensor product
because of the projections and contractions entering these expressions. When this is the
case, we shall often omit the symmetrised product altogether. The first part of the ideal
hIi then factors out all traces from products of so(2, D � 1) generators, while the second
part factors out products associated with Young diagrams containing more than two rows.

In order to define the higher-spin algebra as the quotient

hsD = U(so(2, D � 1))/hIi , (2.15)

the quadratic Casimir, as well as the higher-order Casimir operators must also be fixed [11].
For instance,

�
3

2
IABCDJ

CD
⇠

D � 1

D + 1
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4
id

◆
JAB , (2.16) I-C2

8
In general, the product of two antisymmetric tensors would contain also a “hook” Young diagram with

a single box in the second row. This is however absent in the product of two identical tensors as a result of

the symmetry under exchanges of the factors.
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where (a)n = a(a + 1) . . . (a + n � 1) denotes the raising Pochhammer symbol and q = 1
4

for any finite �, while the polynomials N st
u (m,n) are defined in Appendix A. The structure

constants are polynomials in � and we showed explicitly here only their leading term,
corresponding to the structure constants of the algebra of area-preserving diffeomorphisms
of the two-dimensional hyperbolid [16]. The complete expression for �

st
u (�) can be found

in Appendix A. These algebras satisfy a series of properties that are a general feature of
the quotient construction in AdSD and that correspond to desirable physical requirements:
in particular, they allow minimal coupling to gravity in the sense that [2, s] / s and they
imply a non-zero contribution of higher spins to the gravitational energy-momentum tensor,
that is [s, s] / 2 + · · · .

The Inönü-Wigner contraction leading to ihs3[�] can be performed by defining
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and taking the limit ✏ ! 0. In the basis (3.6), most of the structure constants obtained
in the limit are the same as in the original AdS3 higher-spin algebras, the main difference
being that now all P (s)

m commute:ihs3
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where the structure constants g
st
u are the same as in eq. (3.5). The contracted algebra

contains a Poincaré subalgebra generated by the P
(2)
m and the L

(2)
m . Its Lorentz subalgebra

fits into a hs[�] subalgebra and ihs3[�] inherits from the AdS3 higher-spin algebra several
properties (spin addition rules, minimal coupling to gravity, non-degenerate bilinear form,
finite-dimensional truncability).

Following the pattern that applies to any dimension D � 3, the Poincaré algebra
iso(1, 2) is isomorphic to the two-dimensional Carrollian conformal algebra cca2 (for more
details see Appendix B). However, in this particular case it is also isomorphic to the two-
dimensional Galilean conformal algebra gca2 [79]. Looking at a differential realisation of
the generators Pm and Lm [78], it is natural to interpret the limit (3.6) as a non-relativistic,
Galilean contraction of the conformal algebra so(2, 2). A ultra-relativistic, Carrollian con-
traction of the conformal algebra algebra so(2, 2) is instead naturally defined by introducing
[107, 108]
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and taking the limit L ! 1. The two limits are actually isomorphic thanks to the hs[�]

automorphism L̄
(s)
m ! �L̄

(s)
�m, which boils down to the option of exchanging the time and
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As was noted in [12, 105], for integer values of µ the algebra AD[µ] develops infinite-
dimensional ideals comprising fields whose depth is greater or equal to 2µ. In this setup,
the Eastwood-Vasiliev algebra can be recovered by setting the parameter to the “single-
ton point” µ = 1, which leads to an algebra containing only diagrams of zero depth, thus
corresponding to massless fields. Furthermore, it should be noted that AD[µ] admits finite-
dimensional truncations for µ = D�1

2 + k with k � 0 an integer, whose spectrum involves
only fields with at most 2k indices [12].

3 Three space-time dimensions
sec:3D

In this section we show how the one-parameter family of three-dimensional flat-space higher-
spin algebras ihs3[�] identified in [50] [A: check if this is the first paper where it has
been discussed!] can be obtained as a quotient of the UEA of the isometries of Minkowski
space (see also [51] for similar considerations). We also show that one can equivalently
recover the algebra obtained in the limit � ! 1 by equipping the vector space of traceless
Killing tensors of Minkowski spacetime with a suitable generalisation of the Lie bracket.

3.1 Carrollian and Galilean contractions
sec:3D-flat

The algebras ihs3[�] are obtained from the Inönü-Wigner contraction of the AdS3 higher-
spin algebras hs[�] � hs[�] that we introduced in section 2.2.2. We denote the generators
of the two copies of hs[�] by L

(s)
m and L̄

(s)
m , with s � 2 and �s+1  m  s� 1. Generators

of a given spin s can be realised as products of s � 1 generators Lm (or L̄m) of sl (2,R)
(with the conventions (2.28)) and correspond to the independent vectors in an irreducible
representation of sl (2,R) of dimension 2s� 1. To build them, one can start from
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space (see also [51] for similar considerations). We also show that one can equivalently
recover the algebra obtained in the limit � ! 1 by equipping the vector space of traceless
Killing tensors of Minkowski spacetime with a suitable generalisation of the Lie bracket.
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A

3.2 Another Carrollian contraction
sec:3D-other

We now show that the algebra obtained by considering the limit � ! 1 of ihs3[�] can
also be recovered as a subalgebra of a bigger coset algebra constructed from U(iso(1, 2)).
We also show that this algebra coincides with the space of Minkowski traceless Killing
tensors equipped with the Schouten bracket. The latter construction thus gives a natural
interpretation of this algebra as a flat-space contraction of an AdS3 higher-spin algebra or,
equivalently, as a Carrollian contraction of a conformal higher-algebra.

3.2.1 Alternative Ansatz for higher-translations
sec:3D-other_ansatz

Since the P
(s)
m form an Abelian ideal, istead of starting from the Ansatz (3.10) one may try

to recover the algebra (3.7) as a quotient of U(iso(1, 2)) by building the P
(s)
m as products of

translation generators. In this way one can easily obtain an Abelian subalgebra transforming
correctly under the adjoint action of so(1, 2), but introducing higher-Lorentz generators
eventually lead to the algebras introduced in [51]. These have a wider set of generators
compared to ihs3[�], but we shall show that they contain a subalgebra corresponding to its
� ! 1 limit.

Higher-spin generators We now consider the following Ansatz for the higher-translation
sector, that automatically gives the correct adjoint action for the Lorentz subalgebra:

P
(s)
±(s�1) ⌘ (P±)

s�1
, P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P

(s)
m

i
. (3.45) 3D-other:Ansatz_P

The commutators h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n , (3.46)

are then satisfied by defining

L
(s)
±(s�1) ⌘ (s� 1) (P±)

s�2
L± , L

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , L

(s)
m

i
. (3.47) 3D-other:Ansatz_L

For instance, for s = 3, one obtains

P
(3)
±2 ⌘ P±P± , P

(3)
±1 ⌘ P0P± , P

(3)
0 ⌘ P0P0 �

1

3
P

2
, (3.48)

where P
2
⌘ �

mn
PmPn is the iso(1, 2) quadratic Casimir operator, and

L
(3)
±2 ⌘ 2P±L± , L

(3)
±1 ⌘ P±L0 + P0L± , L

(3)
0 ⌘ 2P0L0 �

2

3
W , (3.49)

where W is the other iso(1, 2) quadratic Casimir operator that we introduced in eq. (3.15).
We also impose that P

2 is proportional to the identity.

Commutation relations With the definition (3.45) and (3.47) the P
(s)
m clearly form an

Abelian ideal since, schematically,
h
L
(s)

, P
(t)
i
/

⇥
P

s�2
L , P

t�1
⇤
/ P

s+t�3 + traces / P
(s+t�2) + P

(s+t�4) + · · · . (3.50)

The structure of the commutators [L(s)
m , L

(t)
n ] requires instead a more careful analysis.
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B

space coordinates in two-dimensional Euclidean space. Since the contractions (3.6) and
(3.8) are equivalent, in the rest of this subsection we shall deal only with the former. We
recall, however, that the two setups lead to different asymptotic symmetries due to the
different behaviour of non-linear algebras in the two limits [108].

3.1.1 The contracted algebras as quotients of U(iso(1, 2))
sec:3D_limit-from-quotient

We are now going to reconstruct the algebra id �W � ihs3[�] — obtained by adding the
identity and an element satisfying W

2 = 0 to the algebra (3.7) — as a quotient of the UEA
of the three-dimensional Poincaré algebra iso(1, 2). To this end, in analogy with eq. (2.26),
we denote by Pm and Lm the generators of the latter:

[Lm , Ln] = (m� n)Lm+n , [Lm , Pn] = (m� n)Pm+n , [Pm , Pn] = 0 , (3.9) poincare

where m,n 2 {�1, 0, 1}. The algebras we wish to reproduce contain only two classes
of higher-spin generators: the L

(s)
m and P

(s)
m corresponding to generalisation of Lorentz

transformations and translations respectively. We shall denote the two sets as the “higher-
Lorentz” and “higher-translation” sectors and we shall analyse them separately.

Higher-Lorentz sector The higher-Lorentz generators L
(s)
m close a hs[�] subalgebra of

ihs3[�] (see eq. (3.7c)). It is therefore natural to consider an Ansatz in which they are
realised as products of Lorentz generators as in eqs. (3.1) and (3.2), that is to consider

L
(s)
±(s�1) ⌘ (L±)

s�1
, L

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , L

(s)
m

i
. (3.10) 3D-flat:Ansatz_L

For instance, for s = 3 we find

L
(3)
±2 = L±L± , L

(3)
±1 = L0L± ±

1

2
L± , L

(3)
0 = L0L0 �

1

3
L
2
. (3.11) spin-3_L

To recover the hs[�] algebra we also have to impose that the quadratic Casimir L
2 of the

Lorentz subalgebra is proportional to the identity with the following � dependence:

L
2
⌘ �

mn
LmLn = L0L0 �

1

2
(L+L� + L�L+) ⇠

�
2
� 1

4
id , (3.12) 3D-flat:Casimir

where �
mn is the inverse Killing metric of so(1, 2) ' sl (2,R) with the conventions of

eq. (2.30). Notice that this is a rather strong constraint since L
2 does not commute with

translations: we shall check its consistency later.

Higher-translation sector The other class of generators, denoted by P
(s)
m , can be recov-

ered from the L
(s)
m via the adjoint action of the Poincaré subalgebra. Indeed, from (3.7b),

we have that h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n , (3.13)

and we can use this relation to define all P (s)
m , that will thus be linear in Pm. For instance,

for s = 3 we have

P
(3)
±2 = L±P± , P

(3)
±1 = L0P± ±

1

2
P± , P

(3)
0 = L0P0 �

1

3
W , (3.14) spin-3_P
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where
W ⌘ �

mn
LmPn = L0P0 �

1

2
L+P� �

1

2
L�P+ , (3.15) Pauli-Lubanski_3D

is the three-dimensional analogue of the Pauli-Lubanski vector, which in this case is a
Casimir operator.

Eqs. (3.14) can be readily generalised to arbitrary values of the spin by noticing that
the adjoint action of Pm is consistent with the definitions

P
(s)
±(s�1) ⌘ (L±)

s�2
P± , P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P

(s)
m

i
. (3.16) 3D-flat:Ansatz_P

The expression for P (s)
±(s�1) follows from the adjoint action of P0 on L

(s)
±(s�1) and the position

of the operator P± is irrelevant since [L±, P±] = 0. The other components are then fixed
by the known action of Lorentz transformations on the P

(s)
m . Still, the consistency of the

whole set of relations (3.10), (3.12) and (3.16) requires some additional constraints that
eventually specify the ideal one has to factor out from the UEA of iso(1, 2).

Consistency conditions Let us observe from (3.7) that
h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n =
h
Lm , P

(s)
n

i
. (3.17) first-consistency

These relations give rise to a first set of consistency conditions, since the two commutators
must agree. We can obtain them from the analysis of the case s = 3:

h
P⌥, L

(3)
±2

i
=

h
L⌥, P

(3)
±2

i
) L±P0 ⇠ P±L0 , (3.18a)

h
P⌥, L

(3)
±1

i
=

h
L⌥, P

(3)
±1

i
) L±P⌥ ⇠ P±L⌥ , (3.18b)

which can be summed up in
LmPn ⇠ PmLn . (3.19) 3D-flat:consistency_1

One can verify that the remaining relations in (3.17) are identically satisfied: the cases with
s � 4 give rise to the same conditions, multiplied on the left or the right by some elements
of U(iso(1, 2)). Using eq. (3.19), one can also check that

⇥
L
2
, Pm

⇤
⇠ 0 . (3.20) [L^2,P]

Therefore, in this setup L
2 commutes with all elements of the Poincaré algebra and this

confirms the consistency of the relation (3.12), in which we imposed L
2
/ id.

We now have to check that the higher-translation generators previously defined form
an Abelian ideal and satisfy the commutation relations (3.7b). From the [L,P ] commutator
and the Leibniz rule, it is clear that [L(s)

m , P
(t)
n ] contains exactly one P generator, and so it

belongs to the higher-translation sector. When developing [P (s)
m , P

(t)
n ] any factors of P can

be pushed to the right thanks to (3.19) and, for s = 2 and t = 3, one obtains the following
set of consistency conditions:

h
P0 , P

(3)
±2

i
= 0 ) P±P± ⇠ 0 , (3.21a)

h
P⌥ , P

(3)
±2

i
= 0 ) P±P0 ⇠ 0 , (3.21b)

h
P⌥ , P

(3)
±1

i
= 0 ) P±P⌥ ⇠ 0 . (3.21c)
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(other components fixed by [L±, . ])
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As was noted in [12, 105], for integer values of µ the algebra AD[µ] develops infinite-
dimensional ideals comprising fields whose depth is greater or equal to 2µ. In this setup,
the Eastwood-Vasiliev algebra can be recovered by setting the parameter to the “single-
ton point” µ = 1, which leads to an algebra containing only diagrams of zero depth, thus
corresponding to massless fields. Furthermore, it should be noted that AD[µ] admits finite-
dimensional truncations for µ = D�1
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only fields with at most 2k indices [12].

3 Three space-time dimensions
sec:3D

In this section we show how the one-parameter family of three-dimensional flat-space higher-
spin algebras ihs3[�] identified in [50] [A: check if this is the first paper where it has
been discussed!] can be obtained as a quotient of the UEA of the isometries of Minkowski
space (see also [51] for similar considerations). We also show that one can equivalently
recover the algebra obtained in the limit � ! 1 by equipping the vector space of traceless
Killing tensors of Minkowski spacetime with a suitable generalisation of the Lie bracket.
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sec:3D-flat
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Which option do you choose?   

A

3.2 Another Carrollian contraction
sec:3D-other

We now show that the algebra obtained by considering the limit � ! 1 of ihs3[�] can
also be recovered as a subalgebra of a bigger coset algebra constructed from U(iso(1, 2)).
We also show that this algebra coincides with the space of Minkowski traceless Killing
tensors equipped with the Schouten bracket. The latter construction thus gives a natural
interpretation of this algebra as a flat-space contraction of an AdS3 higher-spin algebra or,
equivalently, as a Carrollian contraction of a conformal higher-algebra.

3.2.1 Alternative Ansatz for higher-translations
sec:3D-other_ansatz

Since the P
(s)
m form an Abelian ideal, istead of starting from the Ansatz (3.10) one may try

to recover the algebra (3.7) as a quotient of U(iso(1, 2)) by building the P
(s)
m as products of

translation generators. In this way one can easily obtain an Abelian subalgebra transforming
correctly under the adjoint action of so(1, 2), but introducing higher-Lorentz generators
eventually lead to the algebras introduced in [51]. These have a wider set of generators
compared to ihs3[�], but we shall show that they contain a subalgebra corresponding to its
� ! 1 limit.

Higher-spin generators We now consider the following Ansatz for the higher-translation
sector, that automatically gives the correct adjoint action for the Lorentz subalgebra:

P
(s)
±(s�1) ⌘ (P±)

s�1
, P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P
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m

i
. (3.45) 3D-other:Ansatz_P
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are then satisfied by defining
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i
. (3.47) 3D-other:Ansatz_L

For instance, for s = 3, one obtains

P
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(3)
±1 ⌘ P0P± , P

(3)
0 ⌘ P0P0 �

1

3
P

2
, (3.48)

where P
2
⌘ �

mn
PmPn is the iso(1, 2) quadratic Casimir operator, and

L
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±2 ⌘ 2P±L± , L

(3)
±1 ⌘ P±L0 + P0L± , L

(3)
0 ⌘ 2P0L0 �

2

3
W , (3.49)

where W is the other iso(1, 2) quadratic Casimir operator that we introduced in eq. (3.15).
We also impose that P

2 is proportional to the identity.

Commutation relations With the definition (3.45) and (3.47) the P
(s)
m clearly form an

Abelian ideal since, schematically,
h
L
(s)

, P
(t)
i
/

⇥
P

s�2
L , P

t�1
⇤
/ P

s+t�3 + traces / P
(s+t�2) + P

(s+t�4) + · · · . (3.50)

The structure of the commutators [L(s)
m , L

(t)
n ] requires instead a more careful analysis.
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space coordinates in two-dimensional Euclidean space. Since the contractions (3.6) and
(3.8) are equivalent, in the rest of this subsection we shall deal only with the former. We
recall, however, that the two setups lead to different asymptotic symmetries due to the
different behaviour of non-linear algebras in the two limits [108].

3.1.1 The contracted algebras as quotients of U(iso(1, 2))
sec:3D_limit-from-quotient

We are now going to reconstruct the algebra id �W � ihs3[�] — obtained by adding the
identity and an element satisfying W

2 = 0 to the algebra (3.7) — as a quotient of the UEA
of the three-dimensional Poincaré algebra iso(1, 2). To this end, in analogy with eq. (2.26),
we denote by Pm and Lm the generators of the latter:

[Lm , Ln] = (m� n)Lm+n , [Lm , Pn] = (m� n)Pm+n , [Pm , Pn] = 0 , (3.9) poincare

where m,n 2 {�1, 0, 1}. The algebras we wish to reproduce contain only two classes
of higher-spin generators: the L

(s)
m and P

(s)
m corresponding to generalisation of Lorentz

transformations and translations respectively. We shall denote the two sets as the “higher-
Lorentz” and “higher-translation” sectors and we shall analyse them separately.

Higher-Lorentz sector The higher-Lorentz generators L
(s)
m close a hs[�] subalgebra of

ihs3[�] (see eq. (3.7c)). It is therefore natural to consider an Ansatz in which they are
realised as products of Lorentz generators as in eqs. (3.1) and (3.2), that is to consider

L
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i
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For instance, for s = 3 we find

L
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±1 = L0L± ±

1

2
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(3)
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1

3
L
2
. (3.11) spin-3_L

To recover the hs[�] algebra we also have to impose that the quadratic Casimir L
2 of the

Lorentz subalgebra is proportional to the identity with the following � dependence:

L
2
⌘ �

mn
LmLn = L0L0 �

1

2
(L+L� + L�L+) ⇠

�
2
� 1

4
id , (3.12) 3D-flat:Casimir

where �
mn is the inverse Killing metric of so(1, 2) ' sl (2,R) with the conventions of

eq. (2.30). Notice that this is a rather strong constraint since L
2 does not commute with

translations: we shall check its consistency later.

Higher-translation sector The other class of generators, denoted by P
(s)
m , can be recov-

ered from the L
(s)
m via the adjoint action of the Poincaré subalgebra. Indeed, from (3.7b),

we have that h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n , (3.13)

and we can use this relation to define all P (s)
m , that will thus be linear in Pm. For instance,

for s = 3 we have

P
(3)
±2 = L±P± , P

(3)
±1 = L0P± ±

1

2
P± , P

(3)
0 = L0P0 �

1

3
W , (3.14) spin-3_P
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where
W ⌘ �

mn
LmPn = L0P0 �

1

2
L+P� �

1

2
L�P+ , (3.15) Pauli-Lubanski_3D

is the three-dimensional analogue of the Pauli-Lubanski vector, which in this case is a
Casimir operator.

Eqs. (3.14) can be readily generalised to arbitrary values of the spin by noticing that
the adjoint action of Pm is consistent with the definitions

P
(s)
±(s�1) ⌘ (L±)

s�2
P± , P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P

(s)
m

i
. (3.16) 3D-flat:Ansatz_P

The expression for P (s)
±(s�1) follows from the adjoint action of P0 on L

(s)
±(s�1) and the position

of the operator P± is irrelevant since [L±, P±] = 0. The other components are then fixed
by the known action of Lorentz transformations on the P

(s)
m . Still, the consistency of the

whole set of relations (3.10), (3.12) and (3.16) requires some additional constraints that
eventually specify the ideal one has to factor out from the UEA of iso(1, 2).

Consistency conditions Let us observe from (3.7) that
h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n =
h
Lm , P

(s)
n

i
. (3.17) first-consistency

These relations give rise to a first set of consistency conditions, since the two commutators
must agree. We can obtain them from the analysis of the case s = 3:

h
P⌥, L

(3)
±2

i
=

h
L⌥, P

(3)
±2

i
) L±P0 ⇠ P±L0 , (3.18a)

h
P⌥, L

(3)
±1

i
=

h
L⌥, P

(3)
±1

i
) L±P⌥ ⇠ P±L⌥ , (3.18b)

which can be summed up in
LmPn ⇠ PmLn . (3.19) 3D-flat:consistency_1

One can verify that the remaining relations in (3.17) are identically satisfied: the cases with
s � 4 give rise to the same conditions, multiplied on the left or the right by some elements
of U(iso(1, 2)). Using eq. (3.19), one can also check that

⇥
L
2
, Pm

⇤
⇠ 0 . (3.20) [L^2,P]

Therefore, in this setup L
2 commutes with all elements of the Poincaré algebra and this

confirms the consistency of the relation (3.12), in which we imposed L
2
/ id.

We now have to check that the higher-translation generators previously defined form
an Abelian ideal and satisfy the commutation relations (3.7b). From the [L,P ] commutator
and the Leibniz rule, it is clear that [L(s)

m , P
(t)
n ] contains exactly one P generator, and so it

belongs to the higher-translation sector. When developing [P (s)
m , P

(t)
n ] any factors of P can

be pushed to the right thanks to (3.19) and, for s = 2 and t = 3, one obtains the following
set of consistency conditions:

h
P0 , P

(3)
±2

i
= 0 ) P±P± ⇠ 0 , (3.21a)

h
P⌥ , P

(3)
±2

i
= 0 ) P±P0 ⇠ 0 , (3.21b)

h
P⌥ , P

(3)
±1

i
= 0 ) P±P⌥ ⇠ 0 . (3.21c)
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(other components fixed by [L±, . ])

commutators close, but we 
can only get ihs[∞]
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set of consistency conditions:
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& etc.

Taking advantage of the relation (3.19) to get P
(3)
±1 ⇠ P0L± ±

1
2 P± from (3.14), the last

commutator also gives
h
P⌥ , P

(3)
±1

i
= 0 ) P0P0 ⇠ 0 . (3.22)

In conclusion, the product of any two translation generators must vanish:

PmPn ⇠ 0 . (3.23) 3D-flat:consistency_2

In particular, this implies that the quadratic Casimir P
2 must vanish.

From the consistency conditions (3.19) and (3.23) one can also fix the action of the
second quadratic Casimir W (that we defined in eq. (3.15)) on the generators of iso(1, 2):[W,Poincare]

WLk = �
mn

LmPnLk ⇠ �
mn

LmLnPk = L
2
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� 1

4
Pk , (3.24a)

WPk = �
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Notice also that the relations (3.19) and (3.23) imply
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The whole set of consistency conditions,ideal_3D

Pmn ⌘ PmPn ⇠ 0 , (3.26a) ideal-3D_1

Im|n ⌘ LmPn � PmLn ⇠ 0 , (3.26b) ideal-3D_2

L
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4
id ⇠ 0 , (3.26c) ideal-3D_3

defines an ideal because

[Lk, Im|n] = (k �m) Im+k|n + (k � n) Im|n+k , (3.27a)
[Lk,Pmn] = (k �m)P(m+k)n + (k � n)Pm(n+k) , (3.27b)

which show that Pmn and Im|n transform as tensors under Lorentz transformations, and

[Pk, Im|n] = (k �m)P(m+k)n � (k � n)Pm(n+k) , (3.28a)
[Pk,Pmn] = 0 . (3.28b)

Furthermore, we already showed that L
2 is central in the quotient and in section 3.1.2 we

shall see how one can recover the ideal (3.26) from the flat limit of the ideal introduced in
the quotient construction of higher-spin algebra in AdS3. In conclusion, the one-parameter
family of flat-space higher-spin algebras can be obtained as

id�W � ihs3[�] = U(iso(1, 2))/ hIi , (3.29)

where the ideal I is defined by the relations (3.26).
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is the three-dimensional analogue of the Pauli-Lubanski vector, which in this case is a
Casimir operator.

Eqs. (3.14) can be readily generalised to arbitrary values of the spin by noticing that
the adjoint action of Pm is consistent with the definitions

P
(s)
±(s�1) ⌘ (L±)

s�2
P± , P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P

(s)
m

i
. (3.16) 3D-flat:Ansatz_P

The expression for P (s)
±(s�1) follows from the adjoint action of P0 on L

(s)
±(s�1) and the position

of the operator P± is irrelevant since [L±, P±] = 0. The other components are then fixed
by the known action of Lorentz transformations on the P
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m . Still, the consistency of the
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eventually specify the ideal one has to factor out from the UEA of iso(1, 2).
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2 commutes with all elements of the Poincaré algebra and this
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/ id.
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n ] contains exactly one P generator, and so it

belongs to the higher-translation sector. When developing [P (s)
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n ] any factors of P can

be pushed to the right thanks to (3.19) and, for s = 2 and t = 3, one obtains the following
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shall see how one can recover the ideal (3.26) from the flat limit of the ideal introduced in
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HS generators:

Consistency conditions to recover the ihs[λ] commutators:

space coordinates in two-dimensional Euclidean space. Since the contractions (3.6) and
(3.8) are equivalent, in the rest of this subsection we shall deal only with the former. We
recall, however, that the two setups lead to different asymptotic symmetries due to the
different behaviour of non-linear algebras in the two limits [108].

3.1.1 The contracted algebras as quotients of U(iso(1, 2))
sec:3D_limit-from-quotient

We are now going to reconstruct the algebra id �W � ihs3[�] — obtained by adding the
identity and an element satisfying W

2 = 0 to the algebra (3.7) — as a quotient of the UEA
of the three-dimensional Poincaré algebra iso(1, 2). To this end, in analogy with eq. (2.26),
we denote by Pm and Lm the generators of the latter:

[Lm , Ln] = (m� n)Lm+n , [Lm , Pn] = (m� n)Pm+n , [Pm , Pn] = 0 , (3.9) poincare

where m,n 2 {�1, 0, 1}. The algebras we wish to reproduce contain only two classes
of higher-spin generators: the L

(s)
m and P

(s)
m corresponding to generalisation of Lorentz

transformations and translations respectively. We shall denote the two sets as the “higher-
Lorentz” and “higher-translation” sectors and we shall analyse them separately.

Higher-Lorentz sector The higher-Lorentz generators L
(s)
m close a hs[�] subalgebra of

ihs3[�] (see eq. (3.7c)). It is therefore natural to consider an Ansatz in which they are
realised as products of Lorentz generators as in eqs. (3.1) and (3.2), that is to consider

L
(s)
±(s�1) ⌘ (L±)

s�1
, L

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , L

(s)
m

i
. (3.10) 3D-flat:Ansatz_L

For instance, for s = 3 we find

L
(3)
±2 = L±L± , L

(3)
±1 = L0L± ±

1

2
L± , L

(3)
0 = L0L0 �

1

3
L
2
. (3.11) spin-3_L

To recover the hs[�] algebra we also have to impose that the quadratic Casimir L
2 of the

Lorentz subalgebra is proportional to the identity with the following � dependence:

L
2
⌘ �

mn
LmLn = L0L0 �

1

2
(L+L� + L�L+) ⇠

�
2
� 1

4
id , (3.12) 3D-flat:Casimir

where �
mn is the inverse Killing metric of so(1, 2) ' sl (2,R) with the conventions of

eq. (2.30). Notice that this is a rather strong constraint since L
2 does not commute with

translations: we shall check its consistency later.

Higher-translation sector The other class of generators, denoted by P
(s)
m , can be recov-

ered from the L
(s)
m via the adjoint action of the Poincaré subalgebra. Indeed, from (3.7b),

we have that h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n , (3.13)

and we can use this relation to define all P (s)
m , that will thus be linear in Pm. For instance,

for s = 3 we have

P
(3)
±2 = L±P± , P

(3)
±1 = L0P± ±

1

2
P± , P

(3)
0 = L0P0 �

1

3
W , (3.14) spin-3_P
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where
W ⌘ �

mn
LmPn = L0P0 �

1

2
L+P� �

1

2
L�P+ , (3.15) Pauli-Lubanski_3D

is the three-dimensional analogue of the Pauli-Lubanski vector, which in this case is a
Casimir operator.

Eqs. (3.14) can be readily generalised to arbitrary values of the spin by noticing that
the adjoint action of Pm is consistent with the definitions

P
(s)
±(s�1) ⌘ (L±)

s�2
P± , P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P

(s)
m

i
. (3.16) 3D-flat:Ansatz_P

The expression for P (s)
±(s�1) follows from the adjoint action of P0 on L

(s)
±(s�1) and the position

of the operator P± is irrelevant since [L±, P±] = 0. The other components are then fixed
by the known action of Lorentz transformations on the P

(s)
m . Still, the consistency of the

whole set of relations (3.10), (3.12) and (3.16) requires some additional constraints that
eventually specify the ideal one has to factor out from the UEA of iso(1, 2).

Consistency conditions Let us observe from (3.7) that
h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n =
h
Lm , P

(s)
n

i
. (3.17) first-consistency

These relations give rise to a first set of consistency conditions, since the two commutators
must agree. We can obtain them from the analysis of the case s = 3:

h
P⌥, L

(3)
±2

i
=

h
L⌥, P

(3)
±2

i
) L±P0 ⇠ P±L0 , (3.18a)

h
P⌥, L

(3)
±1

i
=

h
L⌥, P

(3)
±1

i
) L±P⌥ ⇠ P±L⌥ , (3.18b)

which can be summed up in
LmPn ⇠ PmLn . (3.19) 3D-flat:consistency_1

One can verify that the remaining relations in (3.17) are identically satisfied: the cases with
s � 4 give rise to the same conditions, multiplied on the left or the right by some elements
of U(iso(1, 2)). Using eq. (3.19), one can also check that

⇥
L
2
, Pm

⇤
⇠ 0 . (3.20) [L^2,P]

Therefore, in this setup L
2 commutes with all elements of the Poincaré algebra and this

confirms the consistency of the relation (3.12), in which we imposed L
2
/ id.

We now have to check that the higher-translation generators previously defined form
an Abelian ideal and satisfy the commutation relations (3.7b). From the [L,P ] commutator
and the Leibniz rule, it is clear that [L(s)

m , P
(t)
n ] contains exactly one P generator, and so it

belongs to the higher-translation sector. When developing [P (s)
m , P

(t)
n ] any factors of P can

be pushed to the right thanks to (3.19) and, for s = 2 and t = 3, one obtains the following
set of consistency conditions:

h
P0 , P

(3)
±2

i
= 0 ) P±P± ⇠ 0 , (3.21a)

h
P⌥ , P

(3)
±2

i
= 0 ) P±P0 ⇠ 0 , (3.21b)

h
P⌥ , P

(3)
±1

i
= 0 ) P±P⌥ ⇠ 0 . (3.21c)
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& etc.

Taking advantage of the relation (3.19) to get P
(3)
±1 ⇠ P0L± ±

1
2 P± from (3.14), the last

commutator also gives
h
P⌥ , P

(3)
±1

i
= 0 ) P0P0 ⇠ 0 . (3.22)

In conclusion, the product of any two translation generators must vanish:

PmPn ⇠ 0 . (3.23) 3D-flat:consistency_2

In particular, this implies that the quadratic Casimir P
2 must vanish.

From the consistency conditions (3.19) and (3.23) one can also fix the action of the
second quadratic Casimir W (that we defined in eq. (3.15)) on the generators of iso(1, 2):[W,Poincare]

WLk = �
mn

LmPnLk ⇠ �
mn

LmLnPk = L
2
Pk ⇠

�
2
� 1

4
Pk , (3.24a)

WPk = �
mn

LmPnPk ⇠ 0 . (3.24b)

Notice also that the relations (3.19) and (3.23) imply

W
2
⇠ L

2
P

2
⇠ 0 . (3.25)

The whole set of consistency conditions,ideal_3D

Pmn ⌘ PmPn ⇠ 0 , (3.26a) ideal-3D_1

Im|n ⌘ LmPn � PmLn ⇠ 0 , (3.26b) ideal-3D_2

L
2
�

�
2
� 1

4
id ⇠ 0 , (3.26c) ideal-3D_3

defines an ideal because

[Lk, Im|n] = (k �m) Im+k|n + (k � n) Im|n+k , (3.27a)
[Lk,Pmn] = (k �m)P(m+k)n + (k � n)Pm(n+k) , (3.27b)

which show that Pmn and Im|n transform as tensors under Lorentz transformations, and

[Pk, Im|n] = (k �m)P(m+k)n � (k � n)Pm(n+k) , (3.28a)
[Pk,Pmn] = 0 . (3.28b)

Furthermore, we already showed that L
2 is central in the quotient and in section 3.1.2 we

shall see how one can recover the ideal (3.26) from the flat limit of the ideal introduced in
the quotient construction of higher-spin algebra in AdS3. In conclusion, the one-parameter
family of flat-space higher-spin algebras can be obtained as

id�W � ihs3[�] = U(iso(1, 2))/ hIi , (3.29)

where the ideal I is defined by the relations (3.26).
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is the three-dimensional analogue of the Pauli-Lubanski vector, which in this case is a
Casimir operator.
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the adjoint action of Pm is consistent with the definitions

P
(s)
±(s�1) ⌘ (L±)

s�2
P± , P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P

(s)
m

i
. (3.16) 3D-flat:Ansatz_P

The expression for P (s)
±(s�1) follows from the adjoint action of P0 on L

(s)
±(s�1) and the position

of the operator P± is irrelevant since [L±, P±] = 0. The other components are then fixed
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s � 4 give rise to the same conditions, multiplied on the left or the right by some elements
of U(iso(1, 2)). Using eq. (3.19), one can also check that

⇥
L
2
, Pm

⇤
⇠ 0 . (3.20) [L^2,P]

Therefore, in this setup L
2 commutes with all elements of the Poincaré algebra and this

confirms the consistency of the relation (3.12), in which we imposed L
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/ id.

We now have to check that the higher-translation generators previously defined form
an Abelian ideal and satisfy the commutation relations (3.7b). From the [L,P ] commutator
and the Leibniz rule, it is clear that [L(s)
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n ] contains exactly one P generator, and so it

belongs to the higher-translation sector. When developing [P (s)
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n ] any factors of P can
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In conclusion, the product of any two translation generators must vanish:
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In particular, this implies that the quadratic Casimir P
2 must vanish.

From the consistency conditions (3.19) and (3.23) one can also fix the action of the
second quadratic Casimir W (that we defined in eq. (3.15)) on the generators of iso(1, 2):[W,Poincare]
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defines an ideal because

[Lk, Im|n] = (k �m) Im+k|n + (k � n) Im|n+k , (3.27a)
[Lk,Pmn] = (k �m)P(m+k)n + (k � n)Pm(n+k) , (3.27b)

which show that Pmn and Im|n transform as tensors under Lorentz transformations, and

[Pk, Im|n] = (k �m)P(m+k)n � (k � n)Pm(n+k) , (3.28a)
[Pk,Pmn] = 0 . (3.28b)

Furthermore, we already showed that L
2 is central in the quotient and in section 3.1.2 we

shall see how one can recover the ideal (3.26) from the flat limit of the ideal introduced in
the quotient construction of higher-spin algebra in AdS3. In conclusion, the one-parameter
family of flat-space higher-spin algebras can be obtained as

id�W � ihs3[�] = U(iso(1, 2))/ hIi , (3.29)

where the ideal I is defined by the relations (3.26).
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Poincaré ideal

On which representation are we evaluating U(iso(1,2))?

see also Ammon, Pannier, 
Riegler (2009)



Coset construction from U(iso(1,2))
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HS generators:

Consistency conditions to recover the ihs[λ] commutators:

space coordinates in two-dimensional Euclidean space. Since the contractions (3.6) and
(3.8) are equivalent, in the rest of this subsection we shall deal only with the former. We
recall, however, that the two setups lead to different asymptotic symmetries due to the
different behaviour of non-linear algebras in the two limits [108].

3.1.1 The contracted algebras as quotients of U(iso(1, 2))
sec:3D_limit-from-quotient

We are now going to reconstruct the algebra id �W � ihs3[�] — obtained by adding the
identity and an element satisfying W

2 = 0 to the algebra (3.7) — as a quotient of the UEA
of the three-dimensional Poincaré algebra iso(1, 2). To this end, in analogy with eq. (2.26),
we denote by Pm and Lm the generators of the latter:

[Lm , Ln] = (m� n)Lm+n , [Lm , Pn] = (m� n)Pm+n , [Pm , Pn] = 0 , (3.9) poincare

where m,n 2 {�1, 0, 1}. The algebras we wish to reproduce contain only two classes
of higher-spin generators: the L

(s)
m and P

(s)
m corresponding to generalisation of Lorentz

transformations and translations respectively. We shall denote the two sets as the “higher-
Lorentz” and “higher-translation” sectors and we shall analyse them separately.

Higher-Lorentz sector The higher-Lorentz generators L
(s)
m close a hs[�] subalgebra of

ihs3[�] (see eq. (3.7c)). It is therefore natural to consider an Ansatz in which they are
realised as products of Lorentz generators as in eqs. (3.1) and (3.2), that is to consider

L
(s)
±(s�1) ⌘ (L±)

s�1
, L

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , L

(s)
m

i
. (3.10) 3D-flat:Ansatz_L

For instance, for s = 3 we find

L
(3)
±2 = L±L± , L

(3)
±1 = L0L± ±

1

2
L± , L

(3)
0 = L0L0 �

1

3
L
2
. (3.11) spin-3_L

To recover the hs[�] algebra we also have to impose that the quadratic Casimir L
2 of the

Lorentz subalgebra is proportional to the identity with the following � dependence:

L
2
⌘ �

mn
LmLn = L0L0 �

1

2
(L+L� + L�L+) ⇠

�
2
� 1

4
id , (3.12) 3D-flat:Casimir

where �
mn is the inverse Killing metric of so(1, 2) ' sl (2,R) with the conventions of

eq. (2.30). Notice that this is a rather strong constraint since L
2 does not commute with

translations: we shall check its consistency later.

Higher-translation sector The other class of generators, denoted by P
(s)
m , can be recov-

ered from the L
(s)
m via the adjoint action of the Poincaré subalgebra. Indeed, from (3.7b),

we have that h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n , (3.13)

and we can use this relation to define all P (s)
m , that will thus be linear in Pm. For instance,

for s = 3 we have

P
(3)
±2 = L±P± , P

(3)
±1 = L0P± ±

1

2
P± , P

(3)
0 = L0P0 �

1

3
W , (3.14) spin-3_P
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where
W ⌘ �

mn
LmPn = L0P0 �

1

2
L+P� �

1

2
L�P+ , (3.15) Pauli-Lubanski_3D

is the three-dimensional analogue of the Pauli-Lubanski vector, which in this case is a
Casimir operator.

Eqs. (3.14) can be readily generalised to arbitrary values of the spin by noticing that
the adjoint action of Pm is consistent with the definitions

P
(s)
±(s�1) ⌘ (L±)

s�2
P± , P

(s)
m⌥1 ⌘

⌥1

s±m� 1

h
L⌥ , P

(s)
m

i
. (3.16) 3D-flat:Ansatz_P

The expression for P (s)
±(s�1) follows from the adjoint action of P0 on L

(s)
±(s�1) and the position

of the operator P± is irrelevant since [L±, P±] = 0. The other components are then fixed
by the known action of Lorentz transformations on the P

(s)
m . Still, the consistency of the

whole set of relations (3.10), (3.12) and (3.16) requires some additional constraints that
eventually specify the ideal one has to factor out from the UEA of iso(1, 2).

Consistency conditions Let us observe from (3.7) that
h
Pm , L

(s)
n

i
= ((s� 1)m� n)P (s)

m+n =
h
Lm , P

(s)
n

i
. (3.17) first-consistency

These relations give rise to a first set of consistency conditions, since the two commutators
must agree. We can obtain them from the analysis of the case s = 3:

h
P⌥, L

(3)
±2

i
=

h
L⌥, P

(3)
±2

i
) L±P0 ⇠ P±L0 , (3.18a)

h
P⌥, L

(3)
±1

i
=

h
L⌥, P

(3)
±1

i
) L±P⌥ ⇠ P±L⌥ , (3.18b)

which can be summed up in
LmPn ⇠ PmLn . (3.19) 3D-flat:consistency_1

One can verify that the remaining relations in (3.17) are identically satisfied: the cases with
s � 4 give rise to the same conditions, multiplied on the left or the right by some elements
of U(iso(1, 2)). Using eq. (3.19), one can also check that

⇥
L
2
, Pm

⇤
⇠ 0 . (3.20) [L^2,P]

Therefore, in this setup L
2 commutes with all elements of the Poincaré algebra and this

confirms the consistency of the relation (3.12), in which we imposed L
2
/ id.

We now have to check that the higher-translation generators previously defined form
an Abelian ideal and satisfy the commutation relations (3.7b). From the [L,P ] commutator
and the Leibniz rule, it is clear that [L(s)

m , P
(t)
n ] contains exactly one P generator, and so it

belongs to the higher-translation sector. When developing [P (s)
m , P

(t)
n ] any factors of P can

be pushed to the right thanks to (3.19) and, for s = 2 and t = 3, one obtains the following
set of consistency conditions:

h
P0 , P

(3)
±2

i
= 0 ) P±P± ⇠ 0 , (3.21a)

h
P⌥ , P

(3)
±2

i
= 0 ) P±P0 ⇠ 0 , (3.21b)

h
P⌥ , P

(3)
±1

i
= 0 ) P±P⌥ ⇠ 0 . (3.21c)
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& etc.

Taking advantage of the relation (3.19) to get P
(3)
±1 ⇠ P0L± ±

1
2 P± from (3.14), the last

commutator also gives
h
P⌥ , P

(3)
±1

i
= 0 ) P0P0 ⇠ 0 . (3.22)

In conclusion, the product of any two translation generators must vanish:

PmPn ⇠ 0 . (3.23) 3D-flat:consistency_2

In particular, this implies that the quadratic Casimir P
2 must vanish.

From the consistency conditions (3.19) and (3.23) one can also fix the action of the
second quadratic Casimir W (that we defined in eq. (3.15)) on the generators of iso(1, 2):[W,Poincare]

WLk = �
mn

LmPnLk ⇠ �
mn

LmLnPk = L
2
Pk ⇠

�
2
� 1

4
Pk , (3.24a)

WPk = �
mn

LmPnPk ⇠ 0 . (3.24b)

Notice also that the relations (3.19) and (3.23) imply

W
2
⇠ L

2
P

2
⇠ 0 . (3.25)

The whole set of consistency conditions,ideal_3D

Pmn ⌘ PmPn ⇠ 0 , (3.26a) ideal-3D_1

Im|n ⌘ LmPn � PmLn ⇠ 0 , (3.26b) ideal-3D_2

L
2
�

�
2
� 1

4
id ⇠ 0 , (3.26c) ideal-3D_3

defines an ideal because

[Lk, Im|n] = (k �m) Im+k|n + (k � n) Im|n+k , (3.27a)
[Lk,Pmn] = (k �m)P(m+k)n + (k � n)Pm(n+k) , (3.27b)

which show that Pmn and Im|n transform as tensors under Lorentz transformations, and

[Pk, Im|n] = (k �m)P(m+k)n � (k � n)Pm(n+k) , (3.28a)
[Pk,Pmn] = 0 . (3.28b)

Furthermore, we already showed that L
2 is central in the quotient and in section 3.1.2 we

shall see how one can recover the ideal (3.26) from the flat limit of the ideal introduced in
the quotient construction of higher-spin algebra in AdS3. In conclusion, the one-parameter
family of flat-space higher-spin algebras can be obtained as

id�W � ihs3[�] = U(iso(1, 2))/ hIi , (3.29)

where the ideal I is defined by the relations (3.26).
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n ] contains exactly one P generator, and so it
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Taking advantage of the relation (3.19) to get P
(3)
±1 ⇠ P0L± ±
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commutator also gives
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In particular, this implies that the quadratic Casimir P
2 must vanish.
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Poincaré ideal

On which representation are we evaluating U(iso(1,2))?

which show precisely the same structure constants. Similarly, introducing

L
(5)
+2 = L0L0L+L+ + 2L0L+L+ �

1

28
(�2

� 37)L+L+ , (3.37a) 3D-flat:L5

P
(5)
+2 = L0L0L+P+ + 2L0L+P+ �

1

28
(�2

� 37)L+P+ . (3.37b) 3D-flat:P5

[S: include L
(4)
+3 and P

(4)
+3 as well?][A: yes, please] one obtains

comm3

h
L
(3)
�1 , L

(4)
+3

i
= �9L(5)

+2 +
3

7
(�2

� 9)L(3)
+2 , (3.38a)

h
P

(3)
�1 , L

(4)
+3

i
=
h
L
(3)
�1 , P

(4)
+3

i
= �9P (5)

+2 +
3

7
(�2

� 9)P (3)
+2 , (3.38b)

and, as we anticipated, the remaining structure constants can be fixed from these inputs
via the Jacobi identities [109].11

3D-flat:matrix

Finite-dimensional matrix representation For � = N 2 N, the family of flat-space
algebras admits finite-dimensional truncations of the form ihs3[N ] ' isl(N,R) ' sl (N,R) ]

sl (N,R)Ab. In this particular case, one can recover the previous construction by evaluating
the UEA of iso(1, 2) on the following finite-dimensional representation of the Poincaré
algebra:

Lm =

 
lm 0

0 lm

!
, Pm =

 
0 lm

0 0

!
, (3.39) irrep_3D

where the lm are N⇥N matrices giving an irreducible representations of so(1, 2) ' sl (2,R).
Thanks to the upper-triagular form of the generators Pm, the conditions (3.26a) and (3.26b)
in the definition of the ideal are clearly satisfied. Moreover,

L
2 =

 
l
2 0

0 l
2

!
=

N
2
� 1

4

 
1 0

0 1

!
, W =

 
0 l

2

0 0

!
=

N
2
� 1

4

 
0 1

0 0

!
, (3.40)

so that also the conditions (3.26c) and (3.24) are satisfied. Notice that W is manifestly
a central element, but it is not proportional to the identity: this is consistent with the
structure of the representation (3.39), which is indecomposable but not irreducible.

The semi-direct structure is realised by simple 2⇥ 2 matrix multiplication, so that the
whole set of generators takes the form

L
(s)
m =

 
l
(s)
m 0

0 l
(s)
m

!
, P

(s)
m =

 
0 l

(s)
m

0 0

!
, (3.41)

where the l
(s)
m are the generators of sl (N,R) in the defining representation. Let us stress

that the upper-triangular form of the generators with so(1, 2) representations on the di-
agonal blocks is in agreement with general results on the structure of finite-dimensional
indecomposable representations of the Poincaré algebra [110].

11
For simplicity we worked out only some commutators with fixed values of the axial quantum numbers

m and n, since our goal was to fix the � dependence of the structure constants. The full m,n dependence

can indeed be reconstructed via the adjoint action of the Poincaré subalgebra.
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with

in order to remove multiplicities from the spectrum, that is to identify, e.g., the elements
JAB and C2JAB in the UEA. This condition also guarantees that products of W with other
elements in the UEA do not introduce new generators since the relations (2.33) imply

WLm ⇠
1

2
C2Lm , W L̄m ⇠ �

1

2
C2L̄m . (2.38)

Eventually, eq. (2.37) leads to the one-parameter family of higher-spin algebras that has
been considered in the literature on massless fields in three dimensions [16, 35, 36, 97].

The conditions (2.34) and (2.37) imply that these algebras are obtained by evaluating
the UEA of so(2, 2) on a reducible module built upon two sl (2,R) irreps with highest-weight
vectors ��h, h̄

↵
so(2,2)

= |hisl(2,R) ⌦
��h̄
↵
sl(2,R) (2.39)

with conformal dimensions h = h̄ = h± = 1
2 (1± �) (or from their conjugate repre-

sentations) [25]. According to the decompositions (2.29) and (2.35), on a generic vec-
tor in this module the Casimir operators C2 = 2(L2 + L̄

2) = �2�1
2 (1 ⌦ 0̄ + 0 ⌦ 1̄) and

W = L
2
� L̄

2 = �2�1
4 (1⌦ 0̄� 0⌦ 1̄) act as

1

2
C2

��h, h̄
↵
=
�
L
2
|hi
�
⌦
�
L̄
2
��h̄
↵�

=
�
2
� 1

4

��h, h̄
↵
, (2.40a)

W
��h, h̄

↵
=
�
L
2
|hi
�
⌦
�
�L̄

2
��h̄
↵�

=
�
2
� 1

4
⌘
��h, h̄

↵
, (2.40b)

where we introduced the twist operator ⌘ reversing the sign of one copy of sl (2,R) while
leaving the other untouched. Of course, ⌘2 = id which respects (2.36). This leads to the
presentation of the one-parameter family of higher-spin algebras as

hs3[�] = id � ⌘ � hs[�]� hs[�] , (2.41)

where hs[�] is defined as

1� hs[�] =
U(sl (2,R))D
C2 �

�2�1
4 1

E , (2.42) hs[lambda]_def

where C2 denotes the sl (2,R) Casimir operator (say L
2 or L̄2). When � = N 2 N its eigen-

value corresponds to that of a finite-dimensional irreducible representation and a further
infinite-dimensional ideal appears. Factoring it out leads to the sl (N,R) algebra, that can
thus be interpreted as a higher-spin algebra involving a finite number of fields.

It is worth revisiting the previous construction in the finite-dimensional case, where it
becomes particularly neat. The absence of mixed products of L and L̄ means that one has
to consider so(2, 2) representations of the form

Lm =

 
lm 0

0 0

!
, L̄m =

 
0 0

0 l̄m

!
, (2.43)

where, a priori, lm and l̄m might be two different finite-dimensional representations of the
sl (2,R) algebra. If this is the case, however, C2 will not be a multiple of the identity (which
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N × N irrep of
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and, as we anticipated, the remaining structure constants can be fixed from these inputs
via the Jacobi identities [109].11
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so that also the conditions (3.26c) and (3.24) are satisfied. Notice that W is manifestly
a central element, but it is not proportional to the identity: this is consistent with the
structure of the representation (3.39), which is indecomposable but not irreducible.

The semi-direct structure is realised by simple 2⇥ 2 matrix multiplication, so that the
whole set of generators takes the form
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where the l
(s)
m are the generators of sl (N,R) in the defining representation. Let us stress

that the upper-triangular form of the generators with so(1, 2) representations on the di-
agonal blocks is in agreement with general results on the structure of finite-dimensional
indecomposable representations of the Poincaré algebra [110].

11
For simplicity we worked out only some commutators with fixed values of the axial quantum numbers

m and n, since our goal was to fix the � dependence of the structure constants. The full m,n dependence

can indeed be reconstructed via the adjoint action of the Poincaré subalgebra.
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and, as we anticipated, the remaining structure constants can be fixed from these inputs
via the Jacobi identities [109].11
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so(2,2) ideal:

Introducing the contraction parameter via
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The limit of the AdS3 ideal is still an ideal

Factoring it out from the Poincaré universal enveloping 
algebra gives a higher-spin algebra with the same 
spectrum as the AdS3 one



Carrollian conformal HS algebras

(in any dimensions)
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Now reverse the logic: look at how the contraction affects the 
so(2,D−1) ideal to define the iso(1,D−1) coset



From U(so(2,D−1)) to U(iso(1,D−1))
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Now reverse the logic: look at how the contraction affects the 
so(2,D−1) ideal to define the iso(1,D−1) coset

Next step: branching so(2,D−1) → so(1,D−1) of the ideal

4.1.1 From U(so(2, D � 1)) to U(iso(1, D � 1))

We recall that the AdSD isometry algebra so(2, D � 1) reads

[JAB , JCD] = ⌘̃AC JBD � ⌘̃AD JBC � ⌘̃BC JAD + ⌘̃BD JAC , (4.1)

with A,B 2 {0 . . . D} and ⌘̃ = diag(�,+, . . . ,+,�). Within the JAB one can select the
generators of Lorentz transformations and transvections in D dimensions: [A: by analogy
with section 3 shouldn’t we use small case Latin indices?]

Pµ ⌘ ✏ JµD , Jµ⌫ ⌘ Jµ⌫ , (4.2)

where µ, ⌫ 2 {0 . . . D� 1}. In this basis, the isometry algebra of Anti de Sitter space reads

[Jµ⌫ , J⇢�] = ⌘µ⇢ J⌫� � ⌘µ� J⌫⇢ � ⌘⌫⇢ Jµ� + ⌘⌫� Jµ⇢ , (4.3a)

[Jµ⌫ , P⇢] = ⌘µ⇢ P⌫ � ⌘⌫⇢ Pµ , (4.3b)

[Pµ , P⌫ ] = �✏
2
Jµ⌫ , (4.3c)

with ⌘ = diag(�,+, . . . ,+). For an interpretation of this basis in terms of conformal
transformations in D�1 dimensions we refer to Appendix B. We assign the same dimensions
to the generators Pµ and Jµ⌫ , so that ✏ is a dimensionless parameter ✏ / G

p
�⇤ where G

is Newton’s constant and ⇤ is the cosmological constant. It thus plays the role of inverse
of the AdS radius and the Poincaré algebra is recovered in an Inönü-Wigner contraction by
sending ✏ ! 0.

UEA of so(2, D � 1) and annihilator of the scalar singleton The ideal that we
factored out from U(so(2, D�1)) to define Eastwood-Vasiliev algebras in section ?? contains
quadratic combinations of the generators JAB. In the basis (??), the linearly independent
quadratic combinations of the generators can be conveniently organised according to their
properties under exchanges of the free D-dimensional indices they carry. One obtains two
independent scalars

P
2 = PµP

µ
, J

2
⌘

1

2
Jµ⌫J

⌫µ
, (4.4)

two traceless symmetric tensors of rank-2,

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, Sµ⌫ = (4.5)

one tensor transforming as a traceless two-row rectangular Young diagram,

xxx (4.6)

and two antisymmetric tensors
xxx (4.7)

The tensors in eqs. (??), (??) and (??) correspond to the branching in so(1, D � 1) com-
ponents of the product JA(B � JC)D, while those in (??) corresponds to the branching of
J[ABJCD].carrollian-anyD:products
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4 Flat-space/Carrollian-conformal higher-spin algebras in any dimen-
sions

We now move to the generic case involving D � 4 space-time dimensions. We build higher-
spin extensions of the Poincaré algebra as coset algebras, obtained by factoring out a suitable
ideal from the UEA of iso(1, D � 1). Reversing the logic we followed in section 3, we first
identify this ideal by looking at how the limit of vanishing cosmological constant affects the
ideal that one factors out in the AdSD coset construction. We then check its consistency
and track how the resulting algebras can also be recovered as Inönü-Wigner contractions of
Eastwood-Vasiliev algebras. We also prove that, under reasonable assumptions, the ideal
we obtain in the limit is the only one whose factorisation gives a coset algebra defined
on the same vector space as the Eastwood-Vasiliev one. Let us recall once again that,
in any D � 4, the contractions presented below can be interpreted either as flat limits of
AdSD higher-spin algebras or as ultra-relativistic, Carrollian limits of conformal higher-spin
algebras in D � 1 dimensions.

4.1 Generic bulk dimension D � 4

To study the flat-space limit of the AdS coset construction we first have to express the
algebra so(2, D � 1) in a basis adapted to the limit. We shall later use the same basis to
classify all cosets of the UEA of iso(1, D � 1) that give the same set of generators as in
Eastwood-Vasiliev algebras.

4.1.1 Minkowski/Carrollian-conformal basis for the hsD algebra

We recall that the algebra so(2, D � 1) reads

[JAB , JCD] = ⌘̃AC JBD � ⌘̃AD JBC � ⌘̃BC JAD + ⌘̃BD JAC , (4.1)

with A,B 2 {0, . . . , D} and ⌘̃ = diag(�,+, . . . ,+,�). Within the JAB one can select the
generators of transvections and Lorentz transformations in D dimensions:

Pa ⌘ ✏ JaD , Jab ⌘ Jab , (4.2)

where a, b 2 {0, . . . , D � 1}. In this basis, the isometry algebra of AdS space reads

[Jab , Jcd] = ⌘ac Jbd � ⌘ad Jbc � ⌘bc Jad + ⌘bd Jac , (4.3a)

[Jab , Pc] = ⌘ac Pb � ⌘bc Pa , (4.3b)

[Pa , Pb] = � ✏
2
Jab , (4.3c)

with ⌘ = diag(�,+, . . . ,+). For the interpretation of this basis in terms of conformal
transformations in D�1 dimensions we refer to Appendix B. We assign the same dimensions
to the generators Pa and Jab, so that ✏ is a dimensionless parameter. The Poincaré algebra
iso(1, D � 1) is recovered by sending ✏ ! 0.
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4 Flat-space/Carrollian-conformal higher-spin algebras in any dimen-
sions

We now move to the generic case involving D � 4 space-time dimensions. We build higher-
spin extensions of the Poincaré algebra as coset algebras, obtained by factoring out a suitable
ideal from the UEA of iso(1, D � 1). Reversing the logic we followed in section 3, we first
identify this ideal by looking at how the limit of vanishing cosmological constant affects the
ideal that one factors out in the AdSD coset construction. We then check its consistency
and track how the resulting algebras can also be recovered as Inönü-Wigner contractions of
Eastwood-Vasiliev algebras. We also prove that, under reasonable assumptions, the ideal
we obtain in the limit is the only one whose factorisation gives a coset algebra defined
on the same vector space as the Eastwood-Vasiliev one. Let us recall once again that,
in any D � 4, the contractions presented below can be interpreted either as flat limits of
AdSD higher-spin algebras or as ultra-relativistic, Carrollian limits of conformal higher-spin
algebras in D � 1 dimensions.

4.1 Generic bulk dimension D � 4

To study the flat-space limit of the AdS coset construction we first have to express the
algebra so(2, D � 1) in a basis adapted to the limit. We shall later use the same basis to
classify all cosets of the UEA of iso(1, D � 1) that give the same set of generators as in
Eastwood-Vasiliev algebras.

4.1.1 Minkowski/Carrollian-conformal basis for the hsD algebra

We recall that the algebra so(2, D � 1) reads

[JAB , JCD] = ⌘̃AC JBD � ⌘̃AD JBC � ⌘̃BC JAD + ⌘̃BD JAC , (4.1)

with A,B 2 {0, . . . , D} and ⌘̃ = diag(�,+, . . . ,+,�). Within the JAB one can select the
generators of transvections and Lorentz transformations in D dimensions:

Pa ⌘ ✏ JaD , Jab ⌘ Jab , (4.2)

where a, b 2 {0, . . . , D � 1}. In this basis, the isometry algebra of AdS space reads

[Jab , Jcd] = ⌘ac Jbd � ⌘ad Jbc � ⌘bc Jad + ⌘bd Jac , (4.3a)

[Jab , Pc] = ⌘ac Pb � ⌘bc Pa , (4.3b)

[Pa , Pb] = � ✏
2
Jab , (4.3c)

with ⌘ = diag(�,+, . . . ,+). For the interpretation of this basis in terms of conformal
transformations in D�1 dimensions we refer to Appendix B. We assign the same dimensions
to the generators Pa and Jab, so that ✏ is a dimensionless parameter. The Poincaré algebra
iso(1, D � 1) is recovered by sending ✏ ! 0.
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where (�tr.) means we are taking the traceless projection of the previous quantity and
we use curly brackets over the indices µ and ⌫ and angled brackets over the indices ⇢

and � to denote two independent different symmetrisations with weight one. Note that
the symmetrisations in {P(µ,P⌫)} and {J

⇢
(µ,J⌫)⇢} are not necessary because the anti-

commutator {·, ·} automatically projects in the symmetric part of the indices. Some linear
combinations among the generators in this list generate an ideal which is obtained from the
branching of the relativistic ideal generated by the elements
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where ⇠ means that the identification takes place in the ideal. The ideal consists of two
parts: the first three expressions come from (the branching of) the symmetric traceless
product IAB = J

C
(AJB)C �

2
D+1 ⌘̃ABJ

2 and the next two come from (the branching of) the
completely antisymmetric one IABCD = J[ABJCD]. Finally, the scalar C2 is the quadratic
Casimir of AdSD, which is already uniquely fixed by the factorisation of the previous ex-
pressions (see for instance section 6 of [11] or section 2). Taking linear combinations of the
first and the last equations we get
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which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three
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Annihilator of the scalar singleton In section 2.2.1 we factored out from the UEA of
so(2, D�1) an ideal generated by quadratic combinations of the JAB, corresponding to the
annihilator of the scalar singleton representation. In the basis (4.3), linearly-independent
quadratic combinations of the generators can be conveniently classified according to their
properties under permutations of their free indices. One has two independent scalars,

P
2
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one irreducible and traceless tensor transforming as a hook Young diagram,
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one tensor transforming as a traceless two-row rectangular Young diagram,
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(4.8)

and two antisymmetric tensors,

Iabc ⌘ {J[ab,Pc]} , Iabcd ⌘ {J[ab,Jcd]} . (4.9)

The tensors in eqs. (4.4)–(4.8) correspond to the branching in so(1, D�1) components of the
product JA(B�JC)D, while those in (4.9) correspond to the branching of J[AB�JCD]. Notice
that it is not necessary to symmetrise explicitly the indices in {P(a,Pb)} and {J

c
(a,Jb)c}

because the anticommutator automatically projects on the symmetric component.
The ideal (2.14) that we factored out in the AdSD coset construction is generated by

the following combinations:
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Coset construction from U(iso(1,D−1))
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iso(1,D−1) ideal

Leftover quadratic combinations, i.e. spin-3 generators:

expressions which we identify as the spin 3 generators
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where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
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� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
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�|⇢ = 0;
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� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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Flat/Carrollian-conformal ideal from the contraction limit By multiplying each
expression of the ideal (4.10) by the suitable power of ✏ so as to keep only the leading part,
one can take a smooth limit ✏ ! 0 and get

{P
b
, Jba} ⇠ 0 , (4.14a)

{Pa,Pb}�
2

D
⌘abP

2
⇠ 0 , (4.14b)

{J[ab ,Pc]} ⇠ 0 , (4.14c)

{J[ab , Jcd]} ⇠ 0 , (4.14d)

together with

P
2
⇠ 0 , J

2
⇠ �

(D � 1)(D � 3)

4
id . (4.15)

Combining eqs. (4.14b) and (4.15) one can eventually recast these expressions as

PaPb ⇠ 0 , (4.16a)

Ia ⌘ {P
b
, Jba} ⇠ 0 , (4.16b)

Iabc ⌘ {J[ab ,Pc]} ⇠ 0 , (4.16c)

Iabcd ⌘ {J[ab , Jcd]} ⇠ 0 , (4.16d)

J
2 +

(D � 1)(D � 3)

4
id ⇠ 0 . (4.16e)

We verify in Appendix C.1 that these relations span an ideal, that we denote by Ic.
Notice that we recovered the condition PaPb ⇠ 0 that was already manifest in D = 3,

but we do not impose the stronger constraint Pa ⇠ 0 that characterises the flat limit of the
scalar singleton proposed in [121]. Compared to the three-dimensional case, the eigenvalue
of J 2 is instead fixed. Moreover, both the quadratic Casimir P

2 and the Pauli-Lubanski
tensor [122]

Wa1···aD�3 ⌘
1

2
✏a1···aD�3bcdJ

bc
P

d (4.17)

vanish on account of the relations (4.16). This implies that all Casimir operators of the
Poincaré algebra are set to zero in any representation satisfying eqs. (4.16a) and (4.16c),
as one can appreciate by looking at their explicit expressions reported, e.g., in [123].
Eq. (4.16a) also tells us that we are not dealing with any Poincaré irreps. in Wigner’s
classification (cf. [124]).

We can now take the quotient of the Poincaré UEA by the two-sided ideal hIci and
consider the resulting coset algebra as a flat-space higher-spin algebra in any dimension D

or, equivalently, as a Carrollian conformal higher-spin algebra in D � 1 dimensions:

ihsD ⌘ U(iso(1, D � 1))/hIci . (4.18)

The generators of this algebra can still be labelled as the Z
(s,t) of the AdSD one and spin-s

generators are given by products of s � 1 spin-two generators. As it is manifest from
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Some commutators…
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All generators transform as Lorentz tensors

Commutators with translations:

eq. (4.16a), these products contain at most one translation generator and, more precisely,
none if t is even and one if t is odd. Since the t-even subalgebra only contains products
of J ’s, it can be viewed as a coset of the UEA of the Lorentz subalgebra. Moreover,
the completely antisymmetric projection {J[ab,Jcd]} is factorised, so that this subalgebra
is isomorphic to one of the higher-spin algebras for partially-massless fields (in D � 1

dimensions and with de Sitter signature) that we reviewed in section 2.3. In particular,
comparing (2.59) and (4.16e), one can see that it corresponds to the µ = 1

2 point of the one-
parameter family of algebras of [13]. The t-odd part can then be recovered by the adjoint
action of Pa on the allowed products of J ’s, with the prescription that {J[ab,Pc]} ⇠ 0

and {P
b
,Jba} ⇠ 0. Computing an additional commutator with Pa does not produce new

generators nor extra consistency conditions because PaPb ⇠ 0.
Since the generators of ihsD are realised as products of Poincaré generators, they all

transforms as Lorentz tensors. For instance, for s = 3 one has

[Jab,Scd] = ⌘acSbd + ⌘adSbc � ⌘bcSad � ⌘bdSac , (4.19a)

[Jab,Mcd|e] = 2 ⌘a(cMd)b|e + ⌘aeMcd|b � 2 ⌘b(cMd)a|e � ⌘beMcd|a , (4.19b)

[Jab,Kcd|ef ] = 2
�
⌘a(cKd)b|ef + ⌘a(eKf)b|cd � ⌘b(cKd)a|ef � ⌘b(eKf)a|cd

�
, (4.19c)

where we used the fact that Kab|cd = Kcd|ab to write the commutators in a compact form.
On the other hand, their commutators with translations take a more “exotic” form:

[Pa,Sbc] = �2Mbc|a , (4.20a)

[Pa,Mbc|d] = 0 , (4.20b)

[Pa,Kbc|de] = � ⌘abMde|c � ⌘acMde|b � ⌘adMbc|e � ⌘aeMbc|d

�
2

D � 2

�
⌘d(bMc)e|a + ⌘e(bMc)d|a � ⌘bcMde|a � ⌘deMbc|a

�
. (4.20c)

This structure generalises to any value of s according to the following schematic rules:
h
P,Z

(s,t)
i
/ Z

(s,t�1) + ⌘Z
(s,t+1) for t even , (4.21a)

h
P,Z

(s,t)
i
= 0 for t odd , (4.21b)

where ⌘Z
(s,t+1) denotes a sum of terms involving various permutations of the indices as,

e.g., in (4.20c). To better appreciate these rules, one can also look at commutators involving
spin-four generators:

Z
(4,0)
abc|def = �Jd(a � Jb|e| � Jc)f + · · · ' , (4.22a)

Z
(4,1)
abc|de = �Jd(a � Jb|e| � Pc) + · · · ' , (4.22b)

Z
(4,2)
abc|d = J

e
(a � Jb|e| � Jc)d + · · · ' , (4.22c)

Z
(4,3)
abc = J

e
(a � Jb|e| � Pc) + · · · ' , (4.22d)
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On the other hand, their commutators with translations take a more “exotic” form:

[Pa,Sbc] = �2Mbc|a , (4.20a)

[Pa,Mbc|d] = 0 , (4.20b)
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This structure generalises to any value of s according to the following schematic rules:
h
P,Z

(s,t)
i
/ Z

(s,t�1) + ⌘Z
(s,t+1) for t even , (4.21a)

h
P,Z

(s,t)
i
= 0 for t odd , (4.21b)

where ⌘Z
(s,t+1) denotes a sum of terms involving various permutations of the indices as,

e.g., in (4.20c). To better appreciate these rules, one can also look at commutators involving
spin-four generators:

Z
(4,0)
abc|def = �Jd(a � Jb|e| � Jc)f + · · · ' , (4.22a)

Z
(4,1)
abc|de = �Jd(a � Jb|e| � Pc) + · · · ' , (4.22b)
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e
(a � Jb|e| � Jc)d + · · · ' , (4.22c)

Z
(4,3)
abc = J
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(a � Jb|e| � Pc) + · · · ' , (4.22d)
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eq. (4.16a), these products contain at most one translation generator and, more precisely,
none if t is even and one if t is odd. Since the t-even subalgebra only contains products
of J ’s, it can be viewed as a coset of the UEA of the Lorentz subalgebra. Moreover,
the completely antisymmetric projection {J[ab,Jcd]} is factorised, so that this subalgebra
is isomorphic to one of the higher-spin algebras for partially-massless fields (in D � 1

dimensions and with de Sitter signature) that we reviewed in section 2.3. In particular,
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2 point of the one-
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The linearised curvatures do not reproduce 
those of Fradkin and Vasiliev



Structure of the algebra
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Higher-spin generators

Commutators with P

expressions which we identify as the spin 3 generators

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, (4.11a)

Mµ⌫|⇢ = {P(µ,J⌫)⇢}�
1

D � 1
⌘µ⌫{P

�
,J�⇢}+

1

D � 1
⌘⇢(µ{P

�
,J|�|⌫)} , (4.11b)

Kµ⌫|⇢� = {J(µh⇢,J⌫)�i}�
1

D � 2
⌘µ⌫{J�⇢,J

�
�}�

1

D � 2
⌘⇢�{J�µ,J

�
⌫}

+
2

D � 2
⌘(µh⇢{J�⌫),J

�
�i}�

2

(D � 2)(D � 1)
(2⌘µ⌫⌘⇢� � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)J

2
,

(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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• t even: no P’s 

• t odd: one P

for t even 

for t odd

        as Inönü-Wigner contraction of  

For D=4 see also 
Fradkin, Vasiliev (1987)

eq. (4.16a), these products contain at most one translation generator and, more precisely,
none if t is even and one if t is odd. Since the t-even subalgebra only contains products
of J ’s, it can be viewed as a coset of the UEA of the Lorentz subalgebra. Moreover,
the completely antisymmetric projection {J[ab,Jcd]} is factorised, so that this subalgebra
is isomorphic to one of the higher-spin algebras for partially-massless fields (in D � 1

dimensions and with de Sitter signature) that we reviewed in section 2.3. In particular,
comparing (2.59) and (4.16e), one can see that it corresponds to the µ = 1

2 point of the one-
parameter family of algebras of [13]. The t-odd part can then be recovered by the adjoint
action of Pa on the allowed products of J ’s, with the prescription that {J[ab,Pc]} ⇠ 0

and {P
b
,Jba} ⇠ 0. Computing an additional commutator with Pa does not produce new

generators nor extra consistency conditions because PaPb ⇠ 0.
Since the generators of ihsD are realised as products of Poincaré generators, they all

transforms as Lorentz tensors. For instance, for s = 3 one has

[Jab,Scd] = ⌘acSbd + ⌘adSbc � ⌘bcSad � ⌘bdSac , (4.19a)

[Jab,Mcd|e] = 2 ⌘a(cMd)b|e + ⌘aeMcd|b � 2 ⌘b(cMd)a|e � ⌘beMcd|a , (4.19b)

[Jab,Kcd|ef ] = 2
�
⌘a(cKd)b|ef + ⌘a(eKf)b|cd � ⌘b(cKd)a|ef � ⌘b(eKf)a|cd

�
, (4.19c)

where we used the fact that Kab|cd = Kcd|ab to write the commutators in a compact form.
On the other hand, their commutators with translations take a more “exotic” form:

[Pa,Sbc] = �2Mbc|a , (4.20a)

[Pa,Mbc|d] = 0 , (4.20b)

[Pa,Kbc|de] = � ⌘abMde|c � ⌘acMde|b � ⌘adMbc|e � ⌘aeMbc|d

�
2

D � 2

�
⌘d(bMc)e|a + ⌘e(bMc)d|a � ⌘bcMde|a � ⌘deMbc|a

�
. (4.20c)

This structure generalises to any value of s according to the following schematic rules:
h
P,Z

(s,t)
i
/ Z

(s,t�1) + ⌘Z
(s,t+1) for t even , (4.21a)

h
P,Z

(s,t)
i
= 0 for t odd , (4.21b)

where ⌘Z
(s,t+1) denotes a sum of terms involving various permutations of the indices as,

e.g., in (4.20c). To better appreciate these rules, one can also look at commutators involving
spin-four generators:

Z
(4,0)
abc|def = �Jd(a � Jb|e| � Jc)f + · · · ' , (4.22a)

Z
(4,1)
abc|de = �Jd(a � Jb|e| � Pc) + · · · ' , (4.22b)

Z
(4,2)
abc|d = J

e
(a � Jb|e| � Jc)d + · · · ' , (4.22c)

Z
(4,3)
abc = J

e
(a � Jb|e| � Pc) + · · · ' , (4.22d)

– 32 –

eq. (4.16a), these products contain at most one translation generator and, more precisely,
none if t is even and one if t is odd. Since the t-even subalgebra only contains products
of J ’s, it can be viewed as a coset of the UEA of the Lorentz subalgebra. Moreover,
the completely antisymmetric projection {J[ab,Jcd]} is factorised, so that this subalgebra
is isomorphic to one of the higher-spin algebras for partially-massless fields (in D � 1

dimensions and with de Sitter signature) that we reviewed in section 2.3. In particular,
comparing (2.59) and (4.16e), one can see that it corresponds to the µ = 1

2 point of the one-
parameter family of algebras of [13]. The t-odd part can then be recovered by the adjoint
action of Pa on the allowed products of J ’s, with the prescription that {J[ab,Pc]} ⇠ 0

and {P
b
,Jba} ⇠ 0. Computing an additional commutator with Pa does not produce new

generators nor extra consistency conditions because PaPb ⇠ 0.
Since the generators of ihsD are realised as products of Poincaré generators, they all

transforms as Lorentz tensors. For instance, for s = 3 one has

[Jab,Scd] = ⌘acSbd + ⌘adSbc � ⌘bcSad � ⌘bdSac , (4.19a)

[Jab,Mcd|e] = 2 ⌘a(cMd)b|e + ⌘aeMcd|b � 2 ⌘b(cMd)a|e � ⌘beMcd|a , (4.19b)

[Jab,Kcd|ef ] = 2
�
⌘a(cKd)b|ef + ⌘a(eKf)b|cd � ⌘b(cKd)a|ef � ⌘b(eKf)a|cd

�
, (4.19c)

where we used the fact that Kab|cd = Kcd|ab to write the commutators in a compact form.
On the other hand, their commutators with translations take a more “exotic” form:

[Pa,Sbc] = �2Mbc|a , (4.20a)

[Pa,Mbc|d] = 0 , (4.20b)

[Pa,Kbc|de] = � ⌘abMde|c � ⌘acMde|b � ⌘adMbc|e � ⌘aeMbc|d

�
2

D � 2

�
⌘d(bMc)e|a + ⌘e(bMc)d|a � ⌘bcMde|a � ⌘deMbc|a

�
. (4.20c)

This structure generalises to any value of s according to the following schematic rules:
h
P,Z

(s,t)
i
/ Z

(s,t�1) + ⌘Z
(s,t+1) for t even , (4.21a)

h
P,Z

(s,t)
i
= 0 for t odd , (4.21b)

where ⌘Z
(s,t+1) denotes a sum of terms involving various permutations of the indices as,

e.g., in (4.20c). To better appreciate these rules, one can also look at commutators involving
spin-four generators:

Z
(4,0)
abc|def = �Jd(a � Jb|e| � Jc)f + · · · ' , (4.22a)

Z
(4,1)
abc|de = �Jd(a � Jb|e| � Pc) + · · · ' , (4.22b)

Z
(4,2)
abc|d = J

e
(a � Jb|e| � Jc)d + · · · ' , (4.22c)

Z
(4,3)
abc = J

e
(a � Jb|e| � Pc) + · · · ' , (4.22d)

– 32 –

Among the remaining quadratic combinations, only Kab|cd transforms as a {2, 2} Young
diagram, so that we have to keep it. Similarly, only Mab|c fits the role of the {2, 1} generator.
The delicate point is that both Qab = {Pa,Pb} + · · · and Sab = {J

c
a,Jbc} + · · · display

the correct Lorentz transformations to fill the role of the remaining spin-three generator.
However, we still have to handle the vector Ia = {P

b
,Jba}, that cannot belong to the set

of generators of the higher-spin algebra since the vector Pa already plays this role. Keeping
Ia would thus both introduce an unwanted multiplicity and violate our hypothesis on the
structure of the generators. Requiring Ia ⇠ 0 then implies that both Qab and P

2 have to
vanish as well when quotienting the ideal since

0 ⇠ [Pa , Ib] = �2
�
PaPb � ⌘abP

2
�
. (4.24)

Summarising, factoring out Ia, Iabc and Iabcd (as required to match the Eastwood-Vasiliev
spectrum) from the UEA of iso(1, D � 1) implies as well the condition PaPb ⇠ 0.

What remains to be determined is the fate of J 2. As it is manifest in (C.1), it becomes
a central element thanks to the previous conditions. It is thus natural to set it proportional
to the identity so as to avoid multiplicities in the spectrum. Its eigenvalue is then fixed by

0 ⇠ IabcJ
bc +

2

3
JabI

b +
D � 3

3
Ia = �

4

3

✓
J

2 +
(D � 1)(D � 3)

4
id

◆
Pa . (4.25)

In conclusion, if one wants to build a higher-spin extension of the Poincaré algebra with
the Eastwood-Vasiliev spectrum (2.22) as a quotient of its UEA by a two-sided ideal, one
can only obtain the coset algebra (4.18).

Notice that one can proceed along the same lines to recover the Eastwood-Vasiliev
algebra as a coset of the UEA of so(2, D � 1), but eq. (4.24) is substituted by

0 ⇠ ✏
�2 [Pa , Ib] = �

�
Sab + ✏

�2
Qab

�
�

4

D
⌘ab

✓
J

2
�

D � 1

2
✏
�2

P
2

◆
, (4.26)

and thus implies (4.10a) and (4.10c).

4.1.3 Inönü-Wigner contractions of hsD

Following the approach used in sections 5 and 6 of [1] to classify infinite-dimensional sub-
algebras of the AdS4 higher-spin algebra, we notice that the parity of s and t is conserved
by the Lie bracket in the Anti de Sitter algebra hsD. More explicitly

h
Z

(s1,t1),Z
(s2,t2)

i
/

X

s3,t3

Z
(s3,t3) , (4.27)

with s1 + s2 � s3 mod 2 = 0 and t1 + t2 � t3 mod 2 = 0. The term with highest spin in the
decomposition is s3 = s1 + s2 � 2, the one with lowest spin is s3 = |s1 � s2| + 2 (this is a
consequence of the spin addition rules guaranteed by the UEA construction) and we always
have t1+ t2 mod 2 = t3 mod 2, since the terms with even t can be written as products of an
even number of P’s, while those with odd t can be written as products of an odd number
of P’s and the number of P’s is conserved modulo 2 both by the Lie bracket and by the
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and thus implies (4.10a) and (4.10c).
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by the Lie bracket in the Anti de Sitter algebra hsD. More explicitly
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with s1 + s2 � s3 mod 2 = 0 and t1 + t2 � t3 mod 2 = 0. The term with highest spin in the
decomposition is s3 = s1 + s2 � 2, the one with lowest spin is s3 = |s1 � s2| + 2 (this is a
consequence of the spin addition rules guaranteed by the UEA construction) and we always
have t1+ t2 mod 2 = t3 mod 2, since the terms with even t can be written as products of an
even number of P’s, while those with odd t can be written as products of an odd number
of P’s and the number of P’s is conserved modulo 2 both by the Lie bracket and by the
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Flat/Carrollian-conformal ideal from the contraction limit By multiplying each
expression of the ideal (4.10) by the suitable power of ✏ so as to keep only the leading part,
one can take a smooth limit ✏ ! 0 and get

{P
b
, Jba} ⇠ 0 , (4.14a)

{Pa,Pb}�
2

D
⌘abP

2
⇠ 0 , (4.14b)

{J[ab ,Pc]} ⇠ 0 , (4.14c)

{J[ab , Jcd]} ⇠ 0 , (4.14d)

together with

P
2
⇠ 0 , J

2
⇠ �

(D � 1)(D � 3)

4
id . (4.15)

Combining eqs. (4.14b) and (4.15) one can eventually recast these expressions as

PaPb ⇠ 0 , (4.16a)

Ia ⌘ {P
b
, Jba} ⇠ 0 , (4.16b)

Iabc ⌘ {J[ab ,Pc]} ⇠ 0 , (4.16c)

Iabcd ⌘ {J[ab , Jcd]} ⇠ 0 , (4.16d)

J
2 +

(D � 1)(D � 3)

4
id ⇠ 0 . (4.16e)

We verify in Appendix C.1 that these relations span an ideal, that we denote by Ic.
Notice that we recovered the condition PaPb ⇠ 0 that was already manifest in D = 3,

but we do not impose the stronger constraint Pa ⇠ 0 that characterises the flat limit of the
scalar singleton proposed in [121]. Compared to the three-dimensional case, the eigenvalue
of J 2 is instead fixed. Moreover, both the quadratic Casimir P

2 and the Pauli-Lubanski
tensor [122]

Wa1···aD�3 ⌘
1

2
✏a1···aD�3bcdJ

bc
P

d (4.17)

vanish on account of the relations (4.16). This implies that all Casimir operators of the
Poincaré algebra are set to zero in any representation satisfying eqs. (4.16a) and (4.16c),
as one can appreciate by looking at their explicit expressions reported, e.g., in [123].
Eq. (4.16a) also tells us that we are not dealing with any Poincaré irreps. in Wigner’s
classification (cf. [124]).

We can now take the quotient of the Poincaré UEA by the two-sided ideal hIci and
consider the resulting coset algebra as a flat-space higher-spin algebra in any dimension D

or, equivalently, as a Carrollian conformal higher-spin algebra in D � 1 dimensions:

ihsD ⌘ U(iso(1, D � 1))/hIci . (4.18)

The generators of this algebra can still be labelled as the Z
(s,t) of the AdSD one and spin-s

generators are given by products of s � 1 spin-two generators. As it is manifest from
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Among the remaining quadratic combinations, only Kab|cd transforms as a {2, 2} Young
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to the identity so as to avoid multiplicities in the spectrum. Its eigenvalue is then fixed by
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In conclusion, if one wants to build a higher-spin extension of the Poincaré algebra with
the Eastwood-Vasiliev spectrum (2.22) as a quotient of its UEA by a two-sided ideal, one
can only obtain the coset algebra (4.18).

Notice that one can proceed along the same lines to recover the Eastwood-Vasiliev
algebra as a coset of the UEA of so(2, D � 1), but eq. (4.24) is substituted by
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and thus implies (4.10a) and (4.10c).

4.1.3 Inönü-Wigner contractions of hsD

Following the approach used in sections 5 and 6 of [1] to classify infinite-dimensional sub-
algebras of the AdS4 higher-spin algebra, we notice that the parity of s and t is conserved
by the Lie bracket in the Anti de Sitter algebra hsD. More explicitly

h
Z

(s1,t1),Z
(s2,t2)

i
/

X

s3,t3

Z
(s3,t3) , (4.27)

with s1 + s2 � s3 mod 2 = 0 and t1 + t2 � t3 mod 2 = 0. The term with highest spin in the
decomposition is s3 = s1 + s2 � 2, the one with lowest spin is s3 = |s1 � s2| + 2 (this is a
consequence of the spin addition rules guaranteed by the UEA construction) and we always
have t1+ t2 mod 2 = t3 mod 2, since the terms with even t can be written as products of an
even number of P’s, while those with odd t can be written as products of an odd number
of P’s and the number of P’s is conserved modulo 2 both by the Lie bracket and by the
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Classification of consistent ideals

Andrea Campoleoni - UMONS

Can one build other conformal Carrollian HS algebras from 
U(iso(1,D−1))?

Portion of the ideal we need to quotient out:
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Candidate spin-3 generators:

scalars a value in an ideal. From the commutation relations presented in appendix C it can
be seen that {J[µ⌫ ,P⇢]} and {J[µ⌫ ,J⇢�]} form an ideal. Roughly speaking,

[J↵� , {J[µ⌫ ,J⇢�]}] = 2⌘↵[µ{J⌫⇢,J�]�}+ 2⌘↵[µ{J⌫|�|,J⇢�]}� (↵ $ �) , (4.36a)
[J↵� , {J[µ⌫ ,P⇢]}] = ⌘↵[µ{J⌫⇢],P�}+ 2⌘↵[µ{J|�|⌫ ,P⇢]}� (↵ $ �) , (4.36b)
[P↵, {J[µ⌫ ,J⇢�]}] = �4⌘↵[µ{J⌫⇢,P�]} , (4.36c)
[P↵, {J[µ⌫ ,P⇢]}] = 0 , (4.36d)

therefore we can consistently factor out those two generators.15 We list here some commu-
tators we will need

⇥
Pµ,J

2
⇤
= {Jµ↵,P

↵
} , (4.37a) carrollian-anyD:commutator_1
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(4.37b) carrollian-anyD:commutator_2
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2
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(4.37c) carrollian-anyD:commutator_3

Since P2 is a Casimir of the Poincaré algebra, it forms an ideal in itself that we can factorise
(we will see in a moment what is the value of this Casimir). Among the remaining elements
of the list, only {Jµ(⌫ ,J⇢)�}� tr. has the correct projection to fit the role of spin 3 higher-
rotations in the Eastwood-Vasiliev spectrum so we keep it. Similarly only

�
Jµ(⌫ ,P⇢)

 
� tr.

fits the role of the mixed-symmetry “hook” type spin 3 generator. The delicate point is that
both {Pµ,P⌫}� tr. and {J

⇢
µ,J⌫⇢}� tr. have the desired symmetric traceless projection to

fill the role of the remaining spin 3 generator. Intuition would dictate that the generator
should correspond to higher-translations and be written as the product of P’s, but

we will see in a moment that this cannot be the case. Among the remaining unwanted
generators there is still the scalar J

2 and the vector {Jµ↵,P
↵
}. The latter cannot stay in

the higher-spin algebra since we already have the vector P↵ filling the role of translations.
Requiring that {Jµ↵,P

↵
} be factorised means that both {Pµ,P⌫}�tr. and P

2 be identified
to zero in the ideal as can be seen from eq. (4.37c), thus solving the dilemma. If we wanted
to factorise {J

⇢
µ,J⌫⇢} � tr. in the ideal anyway and use {Pµ,P⌫} � tr. as the generator

of higher-translations, then both the “hook” generator
�
Jµ(⌫ ,P⇢)

 
� tr. and the symmetric

diagram {Pµ,P⌫}� tr. are necessarily factorised as well as can be seen from commutators
(4.37b) and (4.37c), therefore we are describing only the higher-spin part of the Lorentz
sector, which is identified as an Eastwood-Vasiliev algebra in one dimension less with de
Sitter signature. In the end, only the generator {J

⇢
µ,J⌫⇢} � tr. can serve the role of the

symmetric traceless spin 3 generator.
15

In arbitrary space-time dimension, it is the only thing we can do without introducing extra fields. In

D = 5, there is also the possibility to dualise ✏µ⌫⇢�↵{J[µ⌫ ,J⇢�]} / P↵
but this doesn’t change the main

result.
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(µ,J⌫)⇢}� tr. , {J(µh⇢,J⌫)�i}� tr. , {J[µ⌫ ,J⇢�]} , (4.8a)

where (�tr.) means we are taking the traceless projection of the previous quantity and
we use curly brackets over the indices µ and ⌫ and angled brackets over the indices ⇢

and � to denote two independent different symmetrisations with weight one. Note that
the symmetrisations in {P(µ,P⌫)} and {J

⇢
(µ,J⌫)⇢} are not necessary because the anti-

commutator {·, ·} automatically projects in the symmetric part of the indices. Some linear
combinations among the generators in this list generate an ideal which is obtained from the
branching of the relativistic ideal generated by the elements
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where ⇠ means that the identification takes place in the ideal. The ideal consists of two
parts: the first three expressions come from (the branching of) the symmetric traceless
product IAB = J

C
(AJB)C �

2
D+1 ⌘̃ABJ

2 and the next two come from (the branching of) the
completely antisymmetric one IABCD = J[ABJCD]. Finally, the scalar C2 is the quadratic
Casimir of AdSD, which is already uniquely fixed by the factorisation of the previous ex-
pressions (see for instance section 6 of [11] or section 2). Taking linear combinations of the
first and the last equations we get

J
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which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three

– 31 –

≃

expressions which we identify as the spin 3 generators
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2
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(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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recall the 3D poll!

[P , Z
s,t] Ã Z

s,t+1 (12)

[P , Z
s,t] Ã 0 (13)

Iµ‹fl‡ ≥ 0

3

Annihilator of the scalar singleton In section 2.2.1 we factored out from the UEA of
so(2, D�1) an ideal generated by quadratic combinations of the JAB, corresponding to the
annihilator of the scalar singleton representation. In the basis (4.3), linearly-independent
quadratic combinations of the generators can be conveniently classified according to their
properties under permutations of their free indices. One has two independent scalars,

P
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JabJ
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, (4.4)
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one irreducible and traceless tensor transforming as a hook Young diagram,

Mab|c ⌘ {P(a,Jb)c}+
1

D � 1

⇣
⌘ab{P

d
,Jcd}� ⌘c(a{P

d
,Jb)d}

⌘
, (4.7)

one tensor transforming as a traceless two-row rectangular Young diagram,
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(4.8)

and two antisymmetric tensors,

Iabc ⌘ {J[ab,Pc]} , Iabcd ⌘ {J[ab,Jcd]} . (4.9)

The tensors in eqs. (4.4)–(4.8) correspond to the branching in so(1, D�1) components of the
product JA(B�JC)D, while those in (4.9) correspond to the branching of J[AB�JCD]. Notice
that it is not necessary to symmetrise explicitly the indices in {P(a,Pb)} and {J

c
(a,Jb)c}

because the anticommutator automatically projects on the symmetric component.
The ideal (2.14) that we factored out in the AdSD coset construction is generated by

the following combinations:
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U(iso(1,D−1))?

Portion of the ideal we need to quotient out:
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Pm æ ‘≠1Pm

IABCD ≥ 0 ∆
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Candidate spin-3 generators:

scalars a value in an ideal. From the commutation relations presented in appendix C it can
be seen that {J[µ⌫ ,P⇢]} and {J[µ⌫ ,J⇢�]} form an ideal. Roughly speaking,

[J↵� , {J[µ⌫ ,J⇢�]}] = 2⌘↵[µ{J⌫⇢,J�]�}+ 2⌘↵[µ{J⌫|�|,J⇢�]}� (↵ $ �) , (4.36a)
[J↵� , {J[µ⌫ ,P⇢]}] = ⌘↵[µ{J⌫⇢],P�}+ 2⌘↵[µ{J|�|⌫ ,P⇢]}� (↵ $ �) , (4.36b)
[P↵, {J[µ⌫ ,J⇢�]}] = �4⌘↵[µ{J⌫⇢,P�]} , (4.36c)
[P↵, {J[µ⌫ ,P⇢]}] = 0 , (4.36d)

therefore we can consistently factor out those two generators.15 We list here some commu-
tators we will need

⇥
Pµ,J

2
⇤
= {Jµ↵,P

↵
} , (4.37a) carrollian-anyD:commutator_1
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+ ⌘↵(µ

�
J⌫)⇢,P
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(4.37b) carrollian-anyD:commutator_2

[P⌫ , {Jµ↵,P
↵
}] = {Pµ,P⌫}� 2⌘µ⌫P

2 =

✓
{Pµ,P⌫}�
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D
⌘µ⌫P

2

◆
� 2

D � 1

D
⌘µ⌫P

2
.

(4.37c) carrollian-anyD:commutator_3

Since P2 is a Casimir of the Poincaré algebra, it forms an ideal in itself that we can factorise
(we will see in a moment what is the value of this Casimir). Among the remaining elements
of the list, only {Jµ(⌫ ,J⇢)�}� tr. has the correct projection to fit the role of spin 3 higher-
rotations in the Eastwood-Vasiliev spectrum so we keep it. Similarly only

�
Jµ(⌫ ,P⇢)

 
� tr.

fits the role of the mixed-symmetry “hook” type spin 3 generator. The delicate point is that
both {Pµ,P⌫}� tr. and {J

⇢
µ,J⌫⇢}� tr. have the desired symmetric traceless projection to

fill the role of the remaining spin 3 generator. Intuition would dictate that the generator
should correspond to higher-translations and be written as the product of P’s, but

we will see in a moment that this cannot be the case. Among the remaining unwanted
generators there is still the scalar J

2 and the vector {Jµ↵,P
↵
}. The latter cannot stay in

the higher-spin algebra since we already have the vector P↵ filling the role of translations.
Requiring that {Jµ↵,P

↵
} be factorised means that both {Pµ,P⌫}�tr. and P

2 be identified
to zero in the ideal as can be seen from eq. (4.37c), thus solving the dilemma. If we wanted
to factorise {J

⇢
µ,J⌫⇢} � tr. in the ideal anyway and use {Pµ,P⌫} � tr. as the generator

of higher-translations, then both the “hook” generator
�
Jµ(⌫ ,P⇢)

 
� tr. and the symmetric

diagram {Pµ,P⌫}� tr. are necessarily factorised as well as can be seen from commutators
(4.37b) and (4.37c), therefore we are describing only the higher-spin part of the Lorentz
sector, which is identified as an Eastwood-Vasiliev algebra in one dimension less with de
Sitter signature. In the end, only the generator {J

⇢
µ,J⌫⇢} � tr. can serve the role of the

symmetric traceless spin 3 generator.
15

In arbitrary space-time dimension, it is the only thing we can do without introducing extra fields. In

D = 5, there is also the possibility to dualise ✏µ⌫⇢�↵{J[µ⌫ ,J⇢�]} / P↵
but this doesn’t change the main

result.
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µ
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o
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⇢
(µ,J⌫)⇢}� tr. , {J(µh⇢,J⌫)�i}� tr. , {J[µ⌫ ,J⇢�]} , (4.8a)

where (�tr.) means we are taking the traceless projection of the previous quantity and
we use curly brackets over the indices µ and ⌫ and angled brackets over the indices ⇢

and � to denote two independent different symmetrisations with weight one. Note that
the symmetrisations in {P(µ,P⌫)} and {J

⇢
(µ,J⌫)⇢} are not necessary because the anti-

commutator {·, ·} automatically projects in the symmetric part of the indices. Some linear
combinations among the generators in this list generate an ideal which is obtained from the
branching of the relativistic ideal generated by the elements

J
2
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2
✏
�2

P
2
⇠ 0 , (4.9a) ideal_D_carrollian:1

✏
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o
⇠ 0 , (4.9b) ideal_D_carrollian:2
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D
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�2
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2
⇠ 0 , (4.9c) ideal_D_carrollian:3

{J[µ⌫ ,J⇢�]} ⇠ 0 , (4.9d) ideal_D_carrollian:4

✏
�1

{J[µ⌫ ,P⇢]} ⇠ 0 , (4.9e) ideal_D_carrollian:5

C2 ⌘ J
2 + ✏

�2
P

2
⇠ �

(D + 1)(D � 3)

4
id , (4.9f) ideal_D_carrollian:6

where ⇠ means that the identification takes place in the ideal. The ideal consists of two
parts: the first three expressions come from (the branching of) the symmetric traceless
product IAB = J

C
(AJB)C �

2
D+1 ⌘̃ABJ

2 and the next two come from (the branching of) the
completely antisymmetric one IABCD = J[ABJCD]. Finally, the scalar C2 is the quadratic
Casimir of AdSD, which is already uniquely fixed by the factorisation of the previous ex-
pressions (see for instance section 6 of [11] or section 2). Taking linear combinations of the
first and the last equations we get

J
2
⇠

D � 1

D + 1
C2 ⇠ �

(D � 1)(D � 3)

4
id , (4.10a)

✏
�2

P
2
⇠

2

D + 1
C2 ⇠ �

D � 3

2
id , (4.10b)

which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three
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≃

expressions which we identify as the spin 3 generators
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D
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2
, (4.11a)
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�
,J�⇢}+

1
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�
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(D � 2)(D � 1)
(2⌘µ⌫⌘⇢� � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)J

2
,

(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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recall the 3D poll!

[P , Z
s,t] Ã Z

s,t+1 (12)

[P , Z
s,t] Ã 0 (13)

Iµ‹fl‡ ≥ 0

3

Can one use PμPν as spin-3 generator?

[P , Z
s,t] Ã Z

s,t+1 (12)

[P , Z
s,t] Ã 0 (13)

Iµ‹fl‡ ≥ 0

[P– , J
fl

(µJ‹)fl ≠
2
D

÷µ‹ J
2] = {J–(µ, P‹)} + · · ·

3

Annihilator of the scalar singleton In section 2.2.1 we factored out from the UEA of
so(2, D�1) an ideal generated by quadratic combinations of the JAB, corresponding to the
annihilator of the scalar singleton representation. In the basis (4.3), linearly-independent
quadratic combinations of the generators can be conveniently classified according to their
properties under permutations of their free indices. One has two independent scalars,

P
2
⌘ PaP

a
, J

2
⌘

1

2
JabJ

ba
, (4.4)

one vector,
Ia ⌘ {P

b
,Jba} , (4.5)

two traceless symmetric tensors of rank two,

Qab ⌘ {Pa,Pb}�
2

D
⌘abP

2
, Sab ⌘ {J

c
a,Jbc}�

4

D
⌘abJ

2
, (4.6)

one irreducible and traceless tensor transforming as a hook Young diagram,

Mab|c ⌘ {P(a,Jb)c}+
1

D � 1

⇣
⌘ab{P

d
,Jcd}� ⌘c(a{P

d
,Jb)d}

⌘
, (4.7)

one tensor transforming as a traceless two-row rectangular Young diagram,

Kab|cd ⌘ {Ja(c,Jd)b}+
4

(D � 2)(D � 1)

�
⌘ab⌘cd � ⌘a(c⌘d)b

�
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e
b}� ⌘c(a{Jb)e,J
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d}� ⌘d(a{Jb)e,J

e
c}

⌘
,

(4.8)

and two antisymmetric tensors,

Iabc ⌘ {J[ab,Pc]} , Iabcd ⌘ {J[ab,Jcd]} . (4.9)

The tensors in eqs. (4.4)–(4.8) correspond to the branching in so(1, D�1) components of the
product JA(B�JC)D, while those in (4.9) correspond to the branching of J[AB�JCD]. Notice
that it is not necessary to symmetrise explicitly the indices in {P(a,Pb)} and {J

c
(a,Jb)c}

because the anticommutator automatically projects on the symmetric component.
The ideal (2.14) that we factored out in the AdSD coset construction is generated by

the following combinations:

J
2
�

D � 1

2
✏
�2

P
2
⇠ 0 , (4.10a)

✏
�1

{P
b
, Jba} ⇠ 0 , (4.10b)

Sab + ✏
�2

Qab ⇠ 0 , (4.10c)

✏
�1

{J[ab ,Pc]} ⇠ 0 , (4.10d)

{J[ab , Jcd]} ⇠ 0 , (4.10e)
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4
id . (4.10f)
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Can one build other conformal Carrollian HS algebras from 
U(iso(1,D−1))?

Portion of the ideal we need to quotient out:
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Candidate spin-3 generators:

scalars a value in an ideal. From the commutation relations presented in appendix C it can
be seen that {J[µ⌫ ,P⇢]} and {J[µ⌫ ,J⇢�]} form an ideal. Roughly speaking,

[J↵� , {J[µ⌫ ,J⇢�]}] = 2⌘↵[µ{J⌫⇢,J�]�}+ 2⌘↵[µ{J⌫|�|,J⇢�]}� (↵ $ �) , (4.36a)
[J↵� , {J[µ⌫ ,P⇢]}] = ⌘↵[µ{J⌫⇢],P�}+ 2⌘↵[µ{J|�|⌫ ,P⇢]}� (↵ $ �) , (4.36b)
[P↵, {J[µ⌫ ,J⇢�]}] = �4⌘↵[µ{J⌫⇢,P�]} , (4.36c)
[P↵, {J[µ⌫ ,P⇢]}] = 0 , (4.36d)

therefore we can consistently factor out those two generators.15 We list here some commu-
tators we will need

⇥
Pµ,J
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⇤
= {Jµ↵,P

↵
} , (4.37a) carrollian-anyD:commutator_1
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(4.37b) carrollian-anyD:commutator_2

[P⌫ , {Jµ↵,P
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2
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(4.37c) carrollian-anyD:commutator_3

Since P2 is a Casimir of the Poincaré algebra, it forms an ideal in itself that we can factorise
(we will see in a moment what is the value of this Casimir). Among the remaining elements
of the list, only {Jµ(⌫ ,J⇢)�}� tr. has the correct projection to fit the role of spin 3 higher-
rotations in the Eastwood-Vasiliev spectrum so we keep it. Similarly only

�
Jµ(⌫ ,P⇢)

 
� tr.

fits the role of the mixed-symmetry “hook” type spin 3 generator. The delicate point is that
both {Pµ,P⌫}� tr. and {J

⇢
µ,J⌫⇢}� tr. have the desired symmetric traceless projection to

fill the role of the remaining spin 3 generator. Intuition would dictate that the generator
should correspond to higher-translations and be written as the product of P’s, but

we will see in a moment that this cannot be the case. Among the remaining unwanted
generators there is still the scalar J

2 and the vector {Jµ↵,P
↵
}. The latter cannot stay in

the higher-spin algebra since we already have the vector P↵ filling the role of translations.
Requiring that {Jµ↵,P

↵
} be factorised means that both {Pµ,P⌫}�tr. and P

2 be identified
to zero in the ideal as can be seen from eq. (4.37c), thus solving the dilemma. If we wanted
to factorise {J

⇢
µ,J⌫⇢} � tr. in the ideal anyway and use {Pµ,P⌫} � tr. as the generator

of higher-translations, then both the “hook” generator
�
Jµ(⌫ ,P⇢)

 
� tr. and the symmetric

diagram {Pµ,P⌫}� tr. are necessarily factorised as well as can be seen from commutators
(4.37b) and (4.37c), therefore we are describing only the higher-spin part of the Lorentz
sector, which is identified as an Eastwood-Vasiliev algebra in one dimension less with de
Sitter signature. In the end, only the generator {J

⇢
µ,J⌫⇢} � tr. can serve the role of the

symmetric traceless spin 3 generator.
15

In arbitrary space-time dimension, it is the only thing we can do without introducing extra fields. In

D = 5, there is also the possibility to dualise ✏µ⌫⇢�↵{J[µ⌫ ,J⇢�]} / P↵
but this doesn’t change the main

result.
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�
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o
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�
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J
2
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1

2
Jµ⌫J

⌫µ
, {J

⇢
(µ,J⌫)⇢}� tr. , {J(µh⇢,J⌫)�i}� tr. , {J[µ⌫ ,J⇢�]} , (4.8a)

where (�tr.) means we are taking the traceless projection of the previous quantity and
we use curly brackets over the indices µ and ⌫ and angled brackets over the indices ⇢

and � to denote two independent different symmetrisations with weight one. Note that
the symmetrisations in {P(µ,P⌫)} and {J

⇢
(µ,J⌫)⇢} are not necessary because the anti-

commutator {·, ·} automatically projects in the symmetric part of the indices. Some linear
combinations among the generators in this list generate an ideal which is obtained from the
branching of the relativistic ideal generated by the elements

J
2
�

D � 1

2
✏
�2

P
2
⇠ 0 , (4.9a) ideal_D_carrollian:1

✏
�1

n
P

�
, J�µ

o
⇠ 0 , (4.9b) ideal_D_carrollian:2

{J
⇢
µ,J⌫⇢}�

4

D
⌘µ⌫J

2 + ✏
�2

{Pµ,P⌫}�
2

D
⌘µ⌫✏

�2
P

2
⇠ 0 , (4.9c) ideal_D_carrollian:3

{J[µ⌫ ,J⇢�]} ⇠ 0 , (4.9d) ideal_D_carrollian:4

✏
�1

{J[µ⌫ ,P⇢]} ⇠ 0 , (4.9e) ideal_D_carrollian:5

C2 ⌘ J
2 + ✏

�2
P

2
⇠ �

(D + 1)(D � 3)

4
id , (4.9f) ideal_D_carrollian:6

where ⇠ means that the identification takes place in the ideal. The ideal consists of two
parts: the first three expressions come from (the branching of) the symmetric traceless
product IAB = J

C
(AJB)C �

2
D+1 ⌘̃ABJ

2 and the next two come from (the branching of) the
completely antisymmetric one IABCD = J[ABJCD]. Finally, the scalar C2 is the quadratic
Casimir of AdSD, which is already uniquely fixed by the factorisation of the previous ex-
pressions (see for instance section 6 of [11] or section 2). Taking linear combinations of the
first and the last equations we get

J
2
⇠

D � 1

D + 1
C2 ⇠ �

(D � 1)(D � 3)

4
id , (4.10a)

✏
�2

P
2
⇠

2

D + 1
C2 ⇠ �

D � 3

2
id , (4.10b)

which means that both J
2 and P

2 are central elements in this representation. Among the
quadratic quantities listed above, all are fixed or factorised except for the following three
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≃

expressions which we identify as the spin 3 generators
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2
, (4.11a)
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1

D � 1
⌘µ⌫{P

�
,J�⇢}+

1

D � 1
⌘⇢(µ{P

�
,J|�|⌫)} , (4.11b)

Kµ⌫|⇢� = {J(µh⇢,J⌫)�i}�
1

D � 2
⌘µ⌫{J�⇢,J

�
�}�

1

D � 2
⌘⇢�{J�µ,J

�
⌫}

+
2

D � 2
⌘(µh⇢{J�⌫),J

�
�i}�

2

(D � 2)(D � 1)
(2⌘µ⌫⌘⇢� � ⌘µ⇢⌘⌫� � ⌘µ�⌘⌫⇢)J

2
,

(4.11c)

where a vertical bar is used to separate groups of indices. The generators Q, M and K

have the symmetries

• Qµ⌫ = Q⌫µ and Q
�
� = 0;

• Mµ⌫|⇢ = M⌫µ|⇢, M(µ⌫|⇢) = 0 and M
�
�|⇢ = 0;

• Kµ⌫|⇢� = K⌫µ|⇢� = Kµ⌫|�⇢, K(µ⌫|⇢)� = Kµ(⌫|⇢�) = 0 and K
�
�|⇢� = Kµ⌫|�

� = 0

or in other terms they are irreducible representations of so(1, D � 1) corresponding to the
Young diagrams

Q = , M = , K = , (4.12)

written in the symmetric convention. In the following, we shall use alternatively the name
of the generator or its Young projection since the two are in one-to-one correspondence
after the ideal is factorised.

Note that, at this stage, we may choose to write Qµ⌫ as the traceless part of either
{Pµ,P⌫} or {J

⇢
µ,J⌫⇢} since the two expressions are identified in the ideal. While this is

completely equivalent at the level of the enveloping of the isometry algebra of Anti de Sitter,
one has to be careful when working in the enveloping algebra of Poincaré since we will see
that the two cannot be identified anymore. This is at the heart of the no-go presented in
section 4.1.2.

Higher spins Compared to the Galilean basis, the systematic is quite clear for flat space
as can be worked out directly from the branching rules of two-row Young diagrams of
so(2, D�1) into so(1, D�1): for s � 2, the spectrum of higher-spin gauge fields is spanned
by all the two-row diagrams of so(1, D � 1) with length s� 1 and depth ranging from 0 to
s� 1

Z
s,t

⌘
s� 1

s� t� 1
with t 2 {0, . . . , s� 1} , (4.13)

where we will use the notation Z
s,t for a generic higher-spin generator.

Once again, there are multiple equivalent ways in which to write the higher-spin gen-
erators as products of J ’s and P’s which are all equivalent in AdS (modulo relations in the
ideal), but this will not be true anymore in flat space.
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IABCD ≥ 0 ∆
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Annihilator of the scalar singleton In section 2.2.1 we factored out from the UEA of
so(2, D�1) an ideal generated by quadratic combinations of the JAB, corresponding to the
annihilator of the scalar singleton representation. In the basis (4.3), linearly-independent
quadratic combinations of the generators can be conveniently classified according to their
properties under permutations of their free indices. One has two independent scalars,

P
2
⌘ PaP

a
, J

2
⌘

1

2
JabJ

ba
, (4.4)

one vector,
Ia ⌘ {P

b
,Jba} , (4.5)

two traceless symmetric tensors of rank two,

Qab ⌘ {Pa,Pb}�
2

D
⌘abP

2
, Sab ⌘ {J

c
a,Jbc}�

4

D
⌘abJ

2
, (4.6)

one irreducible and traceless tensor transforming as a hook Young diagram,

Mab|c ⌘ {P(a,Jb)c}+
1

D � 1

⇣
⌘ab{P

d
,Jcd}� ⌘c(a{P

d
,Jb)d}

⌘
, (4.7)

one tensor transforming as a traceless two-row rectangular Young diagram,

Kab|cd ⌘ {Ja(c,Jd)b}+
4

(D � 2)(D � 1)

�
⌘ab⌘cd � ⌘a(c⌘d)b

�
J

2

�
1

D � 2

⇣
⌘ab{Jce,J

e
d}+ ⌘cd{Jae,J

e
b}� ⌘c(a{Jb)e,J

e
d}� ⌘d(a{Jb)e,J

e
c}

⌘
,

(4.8)

and two antisymmetric tensors,

Iabc ⌘ {J[ab,Pc]} , Iabcd ⌘ {J[ab,Jcd]} . (4.9)

The tensors in eqs. (4.4)–(4.8) correspond to the branching in so(1, D�1) components of the
product JA(B�JC)D, while those in (4.9) correspond to the branching of J[AB�JCD]. Notice
that it is not necessary to symmetrise explicitly the indices in {P(a,Pb)} and {J

c
(a,Jb)c}

because the anticommutator automatically projects on the symmetric component.
The ideal (2.14) that we factored out in the AdSD coset construction is generated by

the following combinations:

J
2
�

D � 1

2
✏
�2

P
2
⇠ 0 , (4.10a)

✏
�1

{P
b
, Jba} ⇠ 0 , (4.10b)

Sab + ✏
�2

Qab ⇠ 0 , (4.10c)

✏
�1

{J[ab ,Pc]} ⇠ 0 , (4.10d)

{J[ab , Jcd]} ⇠ 0 , (4.10e)

C2 ⌘ J
2 + ✏

�2
P

2
⇠ �

(D + 1)(D � 3)

4
id . (4.10f)
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Galilean conformal HS algebras

(in any dimensions)



From U(so(2,D−1)) to U(iso(1,D−1))

Andrea Campoleoni - UMONS

Same approach as for Carroll, but with a new splitting of so(2,D−1)
4.1.1 From U(so(2, D � 1)) to U(iso(1, D � 1))

We recall that the AdSD isometry algebra so(2, D � 1) reads

[JAB , JCD] = ⌘̃AC JBD � ⌘̃AD JBC � ⌘̃BC JAD + ⌘̃BD JAC , (4.1)

with A,B 2 {0 . . . D} and ⌘̃ = diag(�,+, . . . ,+,�). Within the JAB one can select the
generators of Lorentz transformations and transvections in D dimensions: [A: by analogy
with section 3 shouldn’t we use small case Latin indices?]

Pµ ⌘ ✏ JµD , Jµ⌫ ⌘ Jµ⌫ , (4.2)

where µ, ⌫ 2 {0 . . . D� 1}. In this basis, the isometry algebra of Anti de Sitter space reads

[Jµ⌫ , J⇢�] = ⌘µ⇢ J⌫� � ⌘µ� J⌫⇢ � ⌘⌫⇢ Jµ� + ⌘⌫� Jµ⇢ , (4.3a)

[Jµ⌫ , P⇢] = ⌘µ⇢ P⌫ � ⌘⌫⇢ Pµ , (4.3b)

[Pµ , P⌫ ] = �✏
2
Jµ⌫ , (4.3c)

with ⌘ = diag(�,+, . . . ,+). For an interpretation of this basis in terms of conformal
transformations in D�1 dimensions we refer to Appendix B. We assign the same dimensions
to the generators Pµ and Jµ⌫ , so that ✏ is a dimensionless parameter ✏ / G

p
�⇤ where G

is Newton’s constant and ⇤ is the cosmological constant. It thus plays the role of inverse
of the AdS radius and the Poincaré algebra is recovered in an Inönü-Wigner contraction by
sending ✏ ! 0.

UEA of so(2, D � 1) and annihilator of the scalar singleton The ideal that we
factored out from U(so(2, D�1)) to define Eastwood-Vasiliev algebras in section ?? contains
quadratic combinations of the generators JAB. In the basis (??), the linearly independent
quadratic combinations of the generators can be conveniently organised according to their
properties under exchanges of the free D-dimensional indices they carry. One obtains two
independent scalars

P
2 = PµP

µ
, J

2
⌘

1

2
Jµ⌫J

⌫µ
, (4.4)

two traceless symmetric tensors of rank-2,

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, Sµ⌫ = (4.5)

one tensor transforming as a traceless two-row rectangular Young diagram,

xxx (4.6)

and two antisymmetric tensors
xxx (4.7)

The tensors in eqs. (??), (??) and (??) correspond to the branching in so(1, D � 1) com-
ponents of the product JA(B � JC)D, while those in (??) corresponds to the branching of
J[ABJCD].carrollian-anyD:products
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5 Galilean contractions in any dimensions
sec:galilean

The Galilean limit of a theory describing gravity in Anti de Sitter space-time is best under-
stood as the Galilean limit of the holographic dual on the conformal boundary. [S: Give
general references for Galilean gravity and Newton-Cartan (non-metric) formu-
lation of gravity in asymptotically flat and AdS space-times (in section 2?)]

5.1 Generic bulk dimension D � 4
sec:galilean-anyD

5.1.1 From U(so(2, D � 1)) to U(gcaD�1)

We will begin by rewriting the generators in a basis suited for Galilean contraction. This
can be obtained via the usual branching rules so(2, D� 1) ! so(1, D� 2) used to write the
conformal algebra on the boundary, and then by branching further so(1, D�2) ! so(D�2)

by singling out the time component. We can then regroup the resulting generators into
different objects according to their representation under so(D� 2) and other properties. It
was first noticed in [77] that there is an sl (2,R) subalgebra which is naturally interpreted,
in the Newton-Cartan formulation of the Galilean contraction of General Relativity, as the
algebra of rigid isometries of the vacuum.

Contraction of the vacuum-preserving isometry algebra As a primer, let us write
the differential realisation of the conformal algebra in 1 + (D � 2) dimensions

Jij = xi@j � xj@i , (5.1a)
Pi = @i , (5.1b)
Bi = xi@t + t@i , (5.1c)
Ki = 2xi

�
t@t + x

j
@j
�
�

�
x
2
� t

2
�
@i , (5.1d)

H = @t , (5.1e)
D = t@t + x

j
@j , (5.1f)

K = �2t
�
t@t + x

j
@j
�
�

�
x
2
� t

2
�
@t , (5.1g)

where i 2 {1, . . . , D� 2}. The Galilean rescaling of space-time coordinates t ! t, xi ! ✏xi

and contraction ✏ ! 0 sends the speed of light to infinity and is therefore called the non-
relativistic limit. In this limit, the generators of space-time isometries divide into two
groups: {Jij , H,D,K} on the one hand are not rescaled (although K changes expression
in the limit ✏ ! 0) and {Pi, Bi,Ki} on the other hand which are rescaled by ✏

�1 (and Ki

changes expression as well).
We now move again to an abstract realisation of the so(2, D � 1) algebra written in

terms of Galilean generators. In order to set the ground for the Inönü-Wigner contraction,
we readily regroup the spin 2 generators into different objects according to their rescaling.
Following the approach of [77], we will note

Jij with i, j 2 {1, . . . , D � 2} , (5.2a)
L̄� = H , L̄0 = D , L̄+ = K , (5.2b)
Ti,� = Pi , Ti,0 = Bi , Ti,+ = Ki with i 2 {1, . . . , D � 2} , (5.2c)
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so(D ≠ 1) sl(2,R)

3

where Jij generates spatial rotations; Ti,� generate spatial translations, Ti,0 generate spa-
tial boosts and Ti,+ generate spatial conformal transformations (spatial accelerations); L̄�
generates time translations, L̄+ generates dilations and L̄+ generates the zeroth component
of conformal transformations (time acceleration). Both L̄m on the one hand and Ti,m for
any i on the other hand rotate under sl (2,R). The commutation relations read in this basis

[Jij , Jkl] = �ikJjl � �jkJil � �ilJjk + �jlJik , [L̄m, L̄n] = (m� n)L̄m+n , [Jij , L̄m] = 0 ,

(5.3a)

[Jij , Tk,m] = �ikTj,m � �jkTi,m , [L̄m, Ti,n] = (m� n)Ti,m+n , (5.3b)
[Ti,m, Tj,n] = �ij(m� n)L̄m+n + �mnJij . (5.3c)

where � is the sl (2,R) Killing metric and � the Kronecker symbol in D � 2 dimensions
playing the role of the metric tensor on the spatial indices. The generator Jij lives in the
adjoint representation of the group of Euclidean rotations so(D� 2), while L̄m lives in the
adjoint representation of the sl (2,R) ' so(2, 1) ⇢ so(2, D � 1) subalgebra. This sl (2,R)
has an interesting interpretation in terms of the rigid isometry algebra of AdS2 sitting inside
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and second leg is in the adjoint of sl (2,R). The Galilean group contraction is realised by
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From U(so(2,D−1)) to U(iso(1,D−1))

Andrea Campoleoni - UMONS

Same approach as for Carroll, but with a new splitting of so(2,D−1)

Contraction:                           with 

4.1.1 From U(so(2, D � 1)) to U(iso(1, D � 1))

We recall that the AdSD isometry algebra so(2, D � 1) reads

[JAB , JCD] = ⌘̃AC JBD � ⌘̃AD JBC � ⌘̃BC JAD + ⌘̃BD JAC , (4.1)

with A,B 2 {0 . . . D} and ⌘̃ = diag(�,+, . . . ,+,�). Within the JAB one can select the
generators of Lorentz transformations and transvections in D dimensions: [A: by analogy
with section 3 shouldn’t we use small case Latin indices?]

Pµ ⌘ ✏ JµD , Jµ⌫ ⌘ Jµ⌫ , (4.2)

where µ, ⌫ 2 {0 . . . D� 1}. In this basis, the isometry algebra of Anti de Sitter space reads

[Jµ⌫ , J⇢�] = ⌘µ⇢ J⌫� � ⌘µ� J⌫⇢ � ⌘⌫⇢ Jµ� + ⌘⌫� Jµ⇢ , (4.3a)

[Jµ⌫ , P⇢] = ⌘µ⇢ P⌫ � ⌘⌫⇢ Pµ , (4.3b)

[Pµ , P⌫ ] = �✏
2
Jµ⌫ , (4.3c)

with ⌘ = diag(�,+, . . . ,+). For an interpretation of this basis in terms of conformal
transformations in D�1 dimensions we refer to Appendix B. We assign the same dimensions
to the generators Pµ and Jµ⌫ , so that ✏ is a dimensionless parameter ✏ / G

p
�⇤ where G

is Newton’s constant and ⇤ is the cosmological constant. It thus plays the role of inverse
of the AdS radius and the Poincaré algebra is recovered in an Inönü-Wigner contraction by
sending ✏ ! 0.

UEA of so(2, D � 1) and annihilator of the scalar singleton The ideal that we
factored out from U(so(2, D�1)) to define Eastwood-Vasiliev algebras in section ?? contains
quadratic combinations of the generators JAB. In the basis (??), the linearly independent
quadratic combinations of the generators can be conveniently organised according to their
properties under exchanges of the free D-dimensional indices they carry. One obtains two
independent scalars

P
2 = PµP

µ
, J

2
⌘

1

2
Jµ⌫J

⌫µ
, (4.4)

two traceless symmetric tensors of rank-2,

Qµ⌫ = {Pµ,P⌫}�
2

D
⌘µ⌫P

2
, Sµ⌫ = (4.5)

one tensor transforming as a traceless two-row rectangular Young diagram,

xxx (4.6)

and two antisymmetric tensors
xxx (4.7)

The tensors in eqs. (??), (??) and (??) correspond to the branching in so(1, D � 1) com-
ponents of the product JA(B � JC)D, while those in (??) corresponds to the branching of
J[ABJCD].carrollian-anyD:products
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5 Galilean contractions in any dimensions
sec:galilean

The Galilean limit of a theory describing gravity in Anti de Sitter space-time is best under-
stood as the Galilean limit of the holographic dual on the conformal boundary. [S: Give
general references for Galilean gravity and Newton-Cartan (non-metric) formu-
lation of gravity in asymptotically flat and AdS space-times (in section 2?)]

5.1 Generic bulk dimension D � 4
sec:galilean-anyD

5.1.1 From U(so(2, D � 1)) to U(gcaD�1)

We will begin by rewriting the generators in a basis suited for Galilean contraction. This
can be obtained via the usual branching rules so(2, D� 1) ! so(1, D� 2) used to write the
conformal algebra on the boundary, and then by branching further so(1, D�2) ! so(D�2)

by singling out the time component. We can then regroup the resulting generators into
different objects according to their representation under so(D� 2) and other properties. It
was first noticed in [77] that there is an sl (2,R) subalgebra which is naturally interpreted,
in the Newton-Cartan formulation of the Galilean contraction of General Relativity, as the
algebra of rigid isometries of the vacuum.

Contraction of the vacuum-preserving isometry algebra As a primer, let us write
the differential realisation of the conformal algebra in 1 + (D � 2) dimensions

Jij = xi@j � xj@i , (5.1a)
Pi = @i , (5.1b)
Bi = xi@t + t@i , (5.1c)
Ki = 2xi

�
t@t + x

j
@j
�
�

�
x
2
� t

2
�
@i , (5.1d)

H = @t , (5.1e)
D = t@t + x

j
@j , (5.1f)

K = �2t
�
t@t + x

j
@j
�
�

�
x
2
� t

2
�
@t , (5.1g)

where i 2 {1, . . . , D� 2}. The Galilean rescaling of space-time coordinates t ! t, xi ! ✏xi

and contraction ✏ ! 0 sends the speed of light to infinity and is therefore called the non-
relativistic limit. In this limit, the generators of space-time isometries divide into two
groups: {Jij , H,D,K} on the one hand are not rescaled (although K changes expression
in the limit ✏ ! 0) and {Pi, Bi,Ki} on the other hand which are rescaled by ✏

�1 (and Ki

changes expression as well).
We now move again to an abstract realisation of the so(2, D � 1) algebra written in

terms of Galilean generators. In order to set the ground for the Inönü-Wigner contraction,
we readily regroup the spin 2 generators into different objects according to their rescaling.
Following the approach of [77], we will note

Jij with i, j 2 {1, . . . , D � 2} , (5.2a)
L̄� = H , L̄0 = D , L̄+ = K , (5.2b)
Ti,� = Pi , Ti,0 = Bi , Ti,+ = Ki with i 2 {1, . . . , D � 2} , (5.2c)
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[P , Z
s,t] Ã Z

s,t+1 (12)

[P , Z
s,t] Ã 0 (13)

Iµ‹fl‡ ≥ 0

[P– , J
fl

(µJ‹)fl ≠
2
D

÷µ‹ J
2] = {J–(µ, P‹)} + · · ·

so(D ≠ 1) sl(2,R)

3

where Jij generates spatial rotations; Ti,� generate spatial translations, Ti,0 generate spa-
tial boosts and Ti,+ generate spatial conformal transformations (spatial accelerations); L̄�
generates time translations, L̄+ generates dilations and L̄+ generates the zeroth component
of conformal transformations (time acceleration). Both L̄m on the one hand and Ti,m for
any i on the other hand rotate under sl (2,R). The commutation relations read in this basis

[Jij , Jkl] = �ikJjl � �jkJil � �ilJjk + �jlJik , [L̄m, L̄n] = (m� n)L̄m+n , [Jij , L̄m] = 0 ,

(5.3a)

[Jij , Tk,m] = �ikTj,m � �jkTi,m , [L̄m, Ti,n] = (m� n)Ti,m+n , (5.3b)
[Ti,m, Tj,n] = �ij(m� n)L̄m+n + �mnJij . (5.3c)

where � is the sl (2,R) Killing metric and � the Kronecker symbol in D � 2 dimensions
playing the role of the metric tensor on the spatial indices. The generator Jij lives in the
adjoint representation of the group of Euclidean rotations so(D� 2), while L̄m lives in the
adjoint representation of the sl (2,R) ' so(2, 1) ⇢ so(2, D � 1) subalgebra. This sl (2,R)
has an interesting interpretation in terms of the rigid isometry algebra of AdS2 sitting inside
of AdSD and representing the non-degenerate part of the metric in the Galilean limit and
serves as the base of the Newton-Cartan theory of gravity [77]. The remaining part of the
Galilean conformal algebra, that we will call in this context Galilean “translations” since
they are the object of the Inönü-Wigner contraction leading to the Galilean Conformal
algebra, are generated by Ti,m whose first leg transforms as a vector under so(D � 2)

and second leg is in the adjoint of sl (2,R). The Galilean group contraction is realised by
rescaling Ti,m ! ✏

�1
Ti,m and sending ✏ ! 0, making Ti,m the generator of an Abelian ideal.

As explained in the review on relativistic higher-spin gauge algebras, the higher-spin
generators are built as symmetric products (anticommutators in the universal enveloping
algebra) of the spin 2 generators and we will represent them by their projection under
so(D � 2) irreps. as well as their integer16 spin under sl (2,R) that we group in a doublet.
For instance
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higher-spin generator.
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We begin by presenting all the possible symmetric products of two spin 2 generators. Since
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j = 0 corresponds corresponds to the trivial representation and j = 1 to the adjoint one.
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We can see that there are multiple generators with the same quantum numbers (e.g.
(•,0)3,0) and also multiple generators that differ only by their translation number (e.g.
( ,0)3,0 and ( ,0)3,2). This is where the relativistic ideal comes into play, by iden-
tifying linear combinations of the generators with the same quantum numbers to zero in
a series of relations. By using the branching rules from so(2, D � 1) ! so(D � 2) again
and recombining the generators, we can express the relativistic ideal corresponding to the
singleton in the Galilean basis
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C2 ⌘ J
2 + L̄
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(D + 1)(D � 3)
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id , (5.14i)

where ⇠ signifies that the identification takes place in the ideal. The four first lines carry
1
2D(D + 3) components coming from (the branching of) the symmetric traceless generator
J
C
(AJB)C � tr. in Anti de Sitter. The four following lines carry 1

6!(D� 2)(D� 1)D(D+1)

coming from the branching of the four-index completely antisymmetric generator J[ABJCD]

in Anti de Sitter. Finally the last line expresses the quadratic Casimir J
2, whose value is

already fixed by the factorisation of the previous two generators, in terms of the quadratic
quantities J2, L̄2 and T

2. Those relations reduce the number of independent spin 3 fields by
identifying different (with possibly different translation numbers) expressions in the ideal,
to the usual 1

12(D� 2)(D+1)(D+2)(D+3) coming from (the branching of) the quadratic
expression JABJCD in the “window” projection .

For the following, we make the prescription that whenever a higher-spin field has (at
least) two possible expressions in U(so(2, D�1)) that are identified in the relativistic ideal,
we will take as a representative the expression with the lowest t number. The reason for
this will become apparent in the discussion about the Galilean Inönü-Wigner contraction
but as a rule of thumb, whenever a field has two possible writings, the one with the lower t
will survive the contraction whereas the one with the higher t will be identified to zero in
the ideal. Whenever there are multiple possible writings with the same value of t, it doesn’t
matter which expression we choose and we will take it to be the one with the most number
of J ’s (eg for (•,0)3,0 we will write J

2 instead of L̄2).
With those considerations in mind, let us summarise the field content up to spin 3 in

a table
where the spin 1 generator is simply the identity. Note that some of the Young tableaux in
this list, for example might be identically vanishing for D < 6.

– 50 –

Ë
P (s)

m , P (t)
n

È
= ‘2

s+t≠2ÿ

u=|s≠t|+2
s+t+u even

gst
s+t≠u(m, n; ⁄)L(u)

m+n (1)

Ë
L(s)

m , P (t)
n

È
=

s+t≠2ÿ

u=|s≠t|+2
s+t+u even

gst
s+t≠u(m, n; ⁄)P (u)

m+n (2)

Ë
L(s)

m , L(t)
n

È
=

s+t≠2ÿ

u=|s≠t|+2
s+t+u even

gst
s+t≠u(m, n; ⁄)L(u)

m+n (3)

‘ æ 0

IAB ≥ 0 ∆ LmL̄n ≥ 0 ∆

Y
_]

_[

PmPn ≠ LmLn ≥ 0

LmPn ≠ PmLn ≥ 0

C2 = L2 + P 2
≥ 2 L2

≥
⁄2

≠ 1
2 id

‘≠2PmPn ≠ LmLn ≥ 0 PmPn ≥ 0 (4)

‘≠1 (LmPn ≠ PmLn) ≥ 0 =∆ LmPn ≠ PmLn ≥ 0 (5)

L2
≠

⁄2
≠ 1
4 id ≥ 0 L2

≠
⁄2

≠ 1
4 id ≥ 0 (6)

Pm æ ‘≠1Pm

IABCD ≥ 0 ∆

PµP‹ ≥ 0 (7)

{P
⁄ , J⁄µ} ≥ 0 (8)

{J[µ‹ , Pfl]} ≥ 0 (9)

{J[µ‹ , Jfl‡]} ≥ 0 (10)

J
2

≥ ≠
(D ≠ 1)(D ≠ 3)

4 id (11)

2

Ë
P (s)

m , P (t)
n

È
= ‘2

s+t≠2ÿ

u=|s≠t|+2
s+t+u even

gst
s+t≠u(m, n; ⁄)L(u)

m+n (1)

Ë
L(s)

m , P (t)
n

È
=

s+t≠2ÿ

u=|s≠t|+2
s+t+u even

gst
s+t≠u(m, n; ⁄)P (u)

m+n (2)

Ë
L(s)

m , L(t)
n

È
=

s+t≠2ÿ

u=|s≠t|+2
s+t+u even

gst
s+t≠u(m, n; ⁄)L(u)

m+n (3)

‘ æ 0

IAB ≥ 0 ∆ LmL̄n ≥ 0 ∆

Y
_]

_[

PmPn ≠ LmLn ≥ 0

LmPn ≠ PmLn ≥ 0

C2 = L2 + P 2
≥ 2 L2

≥
⁄2

≠ 1
2 id

‘≠2PmPn ≠ LmLn ≥ 0 PmPn ≥ 0 (4)

‘≠1 (LmPn ≠ PmLn) ≥ 0 =∆ LmPn ≠ PmLn ≥ 0 (5)

L2
≠

⁄2
≠ 1
4 id ≥ 0 L2

≠
⁄2

≠ 1
4 id ≥ 0 (6)

Pm æ ‘≠1Pm

IABCD ≥ 0 ∆

PµP‹ ≥ 0 (7)

{P
⁄ , J⁄µ} ≥ 0 (8)

{J[µ‹ , Pfl]} ≥ 0 (9)

{J[µ‹ , Jfl‡]} ≥ 0 (10)

J
2

≥ ≠
(D ≠ 1)(D ≠ 3)

4 id (11)

2

Formulae used in Keynote

”Ïµ1···µs = Ò̄(µ1‘µ2···µs) + O(Ï)

Mµ ≥ Mµ|‹ ≥

Mµ‹ ≥ Mµ‹|– ≥ Mµ‹|–— ≥
¸ ˚˙ ˝

V ƒ • ü ü ü ü · · ·

JA(B § JC)D ≠ traces ≥

C2 ©
1
2 JAB § JBA

≥ •

hsD = U(so(2, D ≠ 1))
ÈIAB ü IABCDÍ

∆ C2 ≥ ≠
(D + 1)(D ≠ 3)

4 id

C2 = 2
1
L

2 + L̄2
2

≥
⁄2

≠ 1
2 id

hs3[⁄] = id ü W ü hs[⁄] ü hs[⁄]

U(so(2, 2)) ⁄ œ N

hs5[⁄] = U(so(2, 4))
ÈIAB ü I⁄

ABDCÍ
∆ C2 ≥ 3

1
⁄2

≠ 1
2

id

P (s)
m © ‘

1
L

(s)
m ≠ L̄

(s)
m

2
, L(s)

m © L
(s)
m + L̄

(s)
m

1

or…



The gcaD-1 ideal and Galilean HS algebras

Andrea Campoleoni - UMONS

the suitable power of ✏ to cancel divergences, we have a smooth limit
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Since there is no general result stating that the limit of an ideal is still an ideal, we verify
in appendix D that this is indeed the case. We will call the ideal defined by the above set
of relations Ig. We can now take the quotient of U(gcaD�1) by this two-sided ideal and use
this as the definition of the Galilean higher-spin algebra in any dimension, coming from the
Galilean counterpart of the singleton

ghsD ⌘ U(gcaD�1)/hIgi . (5.19)

The importance of using the lowest t representative for the higher-spin fields is that those
are untouched in the limit, whereas their higher t counterparts are identified to zero in the
ideal. Therefore, ghsD naturally has the same spectrum as hsD.

There are further possible quotients of ghsD by even bigger ideals, for instance the
one with L̄m ' 0, and Ti,m ' 0, which reduce the higher-spin algebra to the quotient of
U(so(D � 2)) by J[ijJkl] ⇠ 0 and J

2
⇠ �

(D�3)(D�5)
4 id and leads to an algebra of partially-

massless fields in D � 3 dimensions with Euclidean signature, corresponding to the � = 1
2

point of the one-parameter family of algebras of [12] (more comments on this later).
The full algebra inherits from similar properties as the algebras of partially-massless

fields in (Anti) de Sitter: unitarity (guaranteed for the so(D�2) part, somewhat unclear for
the sl (2,R) part), gravity is contained as a subalgebra of spin 2 only, minimal coupling to the
spin 2 sector ([2, s] = s), contribution of the higher-spin back-reaction on the background
to the stress-energy tensor ([s, s] ⇠ 2 + . . .) etc.

This algebra naturally constitutes an infinite-dimensional, higher-spin extension of
the isometry algebra of the vacuum in Galilean gravity, with the same spectrum as the
Eastwood-Vasiliev algebra. Its physical interpretation is however beyond the scope of this
paper, as is the general topic of theories of Galilean higher-spin gravity.

Improvement of the previous ideal, quotients of U
�
gcaD�1

�
and truncations The

ideal defined in the previous paragraph is the one coming from the direct limit of the
singleton representation in Anti de Sitter. There are however possible variations on the
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Carrollian and Galilean HS algebras in D = 5
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In D=5 we start from a one-parameter family of algebras 

• Carrollian contraction: only one extra non-isomorphic algebra 
obtained in the limit λ → 0 

• Galilean contraction: a 3D like structure emerges…
5.2.1 Galilean-conformal basis for the hs5[�] family

The spin-two sector When D = 5, we can introduce the generators

Lm = {J31 + iJ12 , iJ23 , J31 � iJ12} for m 2 {�1, 0, 1} , (5.24)

together with the L̄m defined in (5.1). Notice that we used the imaginary unit in the
previous combinations so as to move from the so(3) subalgebra spanned by the Jij to a
sl(2,R) subalgebra. This will allow us to present the relativistic conformal algebra in a more
symmetric way that simplifies the ensuing analysis. Similarly, the Galilean translations can
be collected in the tensor Tm,n with m 2 {�1, 0, 1} defined as

Tm,�1 = (�iP2 + P3, P1,�iP2 � P3) , (5.25a)
Tm,0 = (�iB2 +B3, B1,�iB2 �B3) , (5.25b)

Tm,+1 = (�iK2 +K3,K1,�iK2 �K3) , (5.25c)

where we resorted to the labelling of the generators introduced in Appendix B to identify the
various components. In this basis the commutation relations of so(2, 4) (or, more precisely,
of the real form of D3 obtained via the changes of basis (5.24) and (5.25a)) read

[Lm, Ln] = (m� n)Lm+n , [L̄m, L̄n] = (m� n) L̄m+n , (5.26a)

[Lm, Tn,k] = (m� n)Tm+n,k , [L̄m, Tk,n] = (m� n)Tk,m+n , (5.26b)

[Tm,k, Tn,l] = (m� n) �klLm+n + (k � l) �mnL̄k+l , [L̄m, Lm] = 0 , (5.26c)

where �mn is the sl(2,R) Killing metric (2.31).

Annihilator of the scalar singleton In the basis (5.26), the portion (5.12) of the
annihilator of the scalar singleton reads
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while the portion (5.13) reads17
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We further select here the real form of D3 such that the coefficient in front of � be real. Starting from

the conventions of section 5.1, this can be achieved by sending expressions involving s� 1 generators to is

times themselves.
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“Geometric” algebras for Killing tensors?

Andrea Campoleoni - UMONS

Schouten (1940)Why cannot we use the following bracket? 

• . 

• for p=1 and q=1 it coincides with the Lie bracket 

• the bracket of two Killing tensors is a Killing tensor 

• the bracket of two traceless tensors isn’t traceless

bracket to define a Lie algebra. For Killing tensors, a natural generalisation of the Lie
bracket is provided by the Schouten bracket (see e.g. [112] and references therein). Given
two symmetric contravariant tensors v (of rank p) and w (of rank q) it yields the following
contravariant tensor of rank p+ q � 1:

[v, w]µ1···µp+q�1 ⌘
(p+ q � 1)!

p!q!

⇣
p v

↵(µ1···@↵w
···µp+q�1 � q w

↵(µ1···@↵v
···µp+q�1

⌘
. (3.61) schouten

For p = q = 1 it thus coincides with the Lie bracket. Moreover, the Schouten bracket of two
Killing tensors is again a Killing tensor. On the other hand, the bracket of two traceless
tensors is, in general, not traceless and this prevents the use of (3.61) to introduce a Lie
bracket on the vector space of traceless Killing tensors.

In Appendix B of [111] it was already noticed an exception to this rule: in three
space-time dimensions the Schouten bracket of two AdS traceless Killing tensors is not
traceless, but it can be decomposed into a sum of traceless Killing tensors.12 The algebra
obtained in this way is the � ! 1 limit of hs[�]� hs[�], which is isomorphic to the algebra
of area-preserving diffeomorphisms of the 2D hyperboloid. The traceless Killing tensors of
Minkowski space can be obtained in a ⇤ ! 0 limit from the AdS ones and the bracket (3.61)
is not affected by the curvature of the background. It is therefore not surprising that the
algebra ihs3[1] is isomorphic to the algebra of traceless Killing tensors of three-dimensional
Minkowski space equipped with the Schouten bracket.

To clarify this statement, one can start from the standard expression for the Killing
vectors of Minkowski space in Cartesian coordinates,

(pa)
µ = �a

µ
, (mab)

µ = 2x[a�b]
µ
, (3.62)

with a, b 2 {0, 1, 2}, and perform the changes of basis (2.23) and (2.25). These introduce
the six vectors (Pm)µ and (Lm)µ, with �1  m  1, satisfying the Poincaré algebra (3.9)
(computed via their Lie brackets). To proceed, we recall that all Killing tensors of constant-
curvature spaces can be built as symmetrised products of Killing vectors [86]. Moreover, the
Lie derivative of a traceless Killing tensor along a Killing vector is again a traceless Killing
tensor. In this particular case, one can further observe that the following symmetrised
products are traceless:13

killing-tens-other_3D

(P (s)
±(s�1))

µ1···µs�1 ⌘
(s� 1)!

(2
p
2)s�2

(P±1)
µ1 · · · (P±1)

µs�1 , (3.63a)

(L(s)
±(s�1))

µ1···µs�1 ⌘ (s� 1)
(s� 1)!

(2
p
2)s�2

(P±1)
(µ1 · · · (P±1)

µs�2(L±1)
µs�1). (3.63b)

For instance, ⌘µ⌫(Pm)µ(Pn)⌫ = �mn, where �mn is the sl (2,R) Killing metric (2.30). For
any value of s, one can then define other 4s � 6 independent traceless Killing tensors via

12
When D > 3 the right-hand side of (3.61) can also be decomposed in traceless components, but in

general they do not satisfy the Killing equation (2.2) even when both v and w are traceless Killing tensors.
13

We normalised the Killing tensors in (3.63) so as to simplify the comparison with the structure constants

of hs[�] in the conventions of Appendix A.
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the recursion relations

(P (s)
m±1)
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±1

s⌥m� 1

h
L±1 , P

(s)
m

iµ1···µs�1

, (3.64a)

(L(s)
m±1)

µ1···µs�1 ⌘
±1

s⌥m� 1

h
L±1 , L

(s)
m

iµ1···µs�1

. (3.64b)

These tensors span the whole vector space of traceless Killing tensors. Notice also that the
symmetrised products in (3.63) have the same structure as those defining the highest-weight
generators in section 3.2.1.

The Schouten algebra of traceless Killing tensors then closes if one adds to it the inverse
Minkowski metric, which is a central element since it commutes with all Killing tensors.
For instance,

[L(3)
m , P

(3)
n ]µ⌫⇢ = (m� n)

✓
2 (P (4)

m+n)
µ⌫⇢

�
2m2 + 2n2

�mn� 8

20
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(µ⌫(Pm+n)

⇢)

◆
, (3.65a) [L3,P3]-Killing

[L(3)
m , P

(4)
m ]µ⌫⇢� = (3m� 2n) (P (5)

m+n)
µ⌫⇢�

+
3

35
(5m3

� n
3
� 5m2

n+ 3mn
2
� 17m+ 9n) ⌘(µ⌫(P (3)

m+n)
⇢�)

, (3.65b) [L3,P4]-Killing

and the same results hold true if one substitutes everywhere the P ’s with the correspond-
ing L’s. Identifying ⌘

µ⌫ with the identity, one recovers the same structure constants as in
eqs. (3.52),14 thus proving the isomorphism with ihs3[1].

4 Carrollian contractions in any dimensions
sec:carrollian

We now move to the generic case involving D � 4 space-time dimensions. We build higher-
spin extensions of the Poincaré algebra as coset algebras, obtained by factoring out a suitable
ideal from the UEA of iso(1, D � 1). Reversing the logic we followed in section 3, we first
identify this ideal looking at how the limit of vanishing cosmological constant affects the
ideal that one factors out in the AdSD coset construction. We then check its consistency
and track how the resulting algebras can also be recovered as Inönü-Wigner contractions of
Eastwood-Vasiliev algebras, thus interpreting them, equivalently, as Carrollian contractions
of conformal higher-spin algebras in D� 1 dimensions. We also show that in flat-space one
can deform the previous coset construction while keeping the same spectrum of generators.

4.1 Generic bulk dimension D � 4
sec:carrollian-anyD

To study the flat-space limit of the AdS coset construction we first have to express the
algebra so(2, D � 1) in a basis adapted to the limit. We shall then use the same basis to
classify all cosets of the UEA of iso(1, D � 1) that gave the same set of generators as in
Eastwood-Vasiliev algebras.

14
To be precise, the structure constants match if one defines the symmetrised products with ⌘µ⌫

using

the minimum number of terms needed for the symmetrisation and without any normalisation factor. Our

different convention for the symmetrisations is thus at the origin of the apparent mismatch by a factor of 3

in the comparison between (3.52a) and (3.65a) and by a factor of 6 in the comparison between (3.52c) and

(3.65b).

– 29 –

ihs[∞] !

AC, Henneaux  (2014)



“Geometric” algebras for Killing tensors?

Andrea Campoleoni - UMONS

Can we do something similar in any dimensions?

 Basis of rank-2 Killing tensors

constructed as symmetrised products of Killing vectors [88]. The latter can be presented as

Jab
µ = �

µ
axb � �

µ
bxa , Pa

µ = �
µ
a , (6.2)

and their Lie brackets give the Poincaré algebra, that is (4.3) with ✏ = 0. Notice that
Lorentz transformations and translations have homogeneity (i.e. scaling dimension in x) 1
and 0 respectively. We can group the independent symmetric Killing tensors of rank s� 1

into objects labelled by indices a, b 2 {0, . . . , D� 1}, that correspond to the branching of a
two-row rectangular gl(D + 1) Young diagram into its so(D) components. For each Young
diagram obtained from the branching we introduce the tensor (M(�)

a1···am|b1···bn)
µ1···µs with

m � n satisfying

M
(�)
a(m)|ab(n�1)

µ(s�1) = 0 , ⌘
cd
M

(�)
cda(m�2)|b(n)

µ(s�1) = 0 ,

@
µ
M

(�)
a(m)|b(n)

µ(s�1) = 0 ,
(6.3)

where the indices a, b within each group are symmetrised, while � is an additional label
that accounts for possible multiplicities.

Explicitly, for s = 3 we have, to begin with,

Kab|cd
µ⌫

⌘ Jac
(µ
Jdb

⌫) + Jad
(µ
Jcb

⌫) + · · · , (6.4a)

Mab|c
µ⌫

⌘ Pa
(µ
Jbc

⌫) + Pb
(µ
Jac

⌫) + · · · , (6.4b)

Qab
µ⌫

⌘ 2

✓
Pa

(µ
Pb

⌫)
�

1

D
⌘ab⌘

cd
Pc

(µ
Pd

⌫)

◆
, (6.4c)

where in the first two definitions we omitted the terms that are necessary to implement
a traceless projection in the Latin indices (as in eq. (6.4c)) and that can be read off
from eqs. (4.7) and (4.8). These rank-two tensors are also traceless in the Greek indices
(⌘µ⌫(Qab)µ⌫ = 0 etc.) and they actually form a basis for the subspace of traceless Killing
tensors of rank two. They can thus be interpreted as the generators of the global symme-
tries of a massless spin-three field and they correspond to the tensors introduced in D = 3

in eq. (3.61) (in that case Kab|cd vanishes identically due to the low dimension). They have
homogeneity 2, 1 and 0 respectively. To complete the basis, we also have to consider the
traces (in the Latin indices) of all admissible symmetrised products of Killing vectors, i.e.

Sab
µ⌫

⌘ 2

✓
⌘
cd
Jac

(µ
Jdb

⌫)
�

1

D
⌘ab⌘

cd
⌘
ef
Jce

(µ
Jfd

⌫)

◆
, (6.5a)

Ia
µ⌫

⌘ 2 ⌘bcPb
(µ
Jca

⌫)
, (6.5b)

(J 2)µ⌫ ⌘
1

2
⌘
ab
⌘
cd
J

(µ
ac Jdb

⌫)
, (6.5c)

with homogeneity 2, 1 and 2, together with

(P2)µ⌫ ⌘ ⌘
ab
Pa

(µ
Pb

⌫) = ⌘
µ⌫

, (6.6)
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– 53 –with homogeneity 0. Notice that we listed almost all combinations that appear at the
beginning of section 4.1.1, with the exception of those in eq. (4.9). The reason is that, due
to the specific realisation of the Poincaré algebra introduced in (6.2), one has

Iabc
µ⌫

⌘ 2J[ab
(µ
Pc]

⌫) = 0 , Iabcd
µ⌫

⌘ 2J[ab
(µ
Jcd]

⌫) = 0 . (6.7)

The key observation to proceed is that ⌘
µ⌫ behaves like the identity: its Schouten

bracket with any Killing tensor vanishes, and this is actually an alternative way to char-
acterise Killing tensors [88]. Moreover — given the constraints (6.6) and (6.7) — if one
interprets a symmetrised product with ⌘

µ⌫ (as, e.g., ⌘(µ⌫Pa
⇢)) as a product with the identity

(as we already did in eq. (3.63)) then the spectrum of independent generators is manifestly
the same as that of the algebras AD[µ] defined in eq. (2.58). More precisely, with the iden-
tification ⌘

µ⌫
' id and using the associative product induced by the symmetrised product

of tensors, the Schouten algebra corresponds to the coset algebra obtained by evaluating
the Poincaré UEA on a representation satisfying P

2
⇠ ⌫ id, Iabc ⇠ 0, Iabcd ⇠ 0 and with all

higher-order Casimir operators vanishing (because they are all proportional to the Pauli-
Lubanski tensor (4.17) that is built out of Iabc). We denote this algebra by gSchD and in
section 6.1.2 we shall see explicitly that these conditions also emerge in an Inönü-Wigner
contraction of AD[µ]. This is the same setup that we already encountered in D = 3 in
section 3.2 and, like in that case, we also remark that one can always rescale at will Pa,
because the number of translations on the left- and right-hand sides of any non-Abelian
commutator is always the same (in iso(1, D�1) the adjoint action of Pa either gives another
translation or zero, differently to what happens in so(2, D � 1)). Therefore ⌫ is not a true
parameter in the algebra gSchD and it can be fixed to an arbitrary value. The previous
construction also agrees with the definition in [33] of a higher-spin algebra in Minkowski
space, named “off-shell”, as the centraliser of P

2 in the Poincaré UEA, realised through
Weyl-ordered polynomials of the operators x̂

µ and P̂
µ.

To have a better grasp on the structure of the algebras SchD and gSchD, one can
compute the Schouten bracket of the tensors (6.4) and (6.5) among themselves or with the
Killing vectors (6.2). For the massless sector one obtains

[Pa,Kbc|de]
µ⌫ = �

�
⌘abMde|c

µ⌫ + ⌘acMde|b
µ⌫ + ⌘adMbc|e

µ⌫ + ⌘aeMbc|d
µ⌫
�

�
2

D � 2

�
⌘d(bMc)e|a

µ⌫ + ⌘e(bMc)d|a
µ⌫

� ⌘bcMde|a
µ⌫

� ⌘deMbc|a
µ⌫
�
, (6.8a)

[Pa,Mbc|d]
µ⌫ =

�
⌘adQbc

µ⌫
� ⌘a(bQc)d

µ⌫
�
+

1

D � 1

�
⌘bcQad

µ⌫
� ⌘d(bQc)a

µ⌫
�
, (6.8b)

[Pa,Qbc]
µ⌫ = 0 , (6.8c)

while the additional generators satisfy, e.g.,

[Pa, Ib]
µ⌫ = �Qab

µ⌫ +
2(D � 1)

D
⌘ab (P

2)µ⌫ . (6.9)

Brackets with Jab
µ take instead the same form as in (4.19) and (C.2) since all rank-two

tensors are given by products of Killing vectors. Notice that, compared to the commutators
(4.20) of the algebra ihsD, one obtains a non-vanishing contribution on the right-hand side
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“Geometric” algebras for Killing tensors?
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Can we do something similar in any dimensions?

 Basis of rank-2 Killing tensors

constructed as symmetrised products of Killing vectors [88]. The latter can be presented as

Jab
µ = �

µ
axb � �

µ
bxa , Pa

µ = �
µ
a , (6.2)

and their Lie brackets give the Poincaré algebra, that is (4.3) with ✏ = 0. Notice that
Lorentz transformations and translations have homogeneity (i.e. scaling dimension in x) 1
and 0 respectively. We can group the independent symmetric Killing tensors of rank s� 1

into objects labelled by indices a, b 2 {0, . . . , D� 1}, that correspond to the branching of a
two-row rectangular gl(D + 1) Young diagram into its so(D) components. For each Young
diagram obtained from the branching we introduce the tensor (M(�)

a1···am|b1···bn)
µ1···µs with

m � n satisfying

M
(�)
a(m)|ab(n�1)

µ(s�1) = 0 , ⌘
cd
M

(�)
cda(m�2)|b(n)

µ(s�1) = 0 ,

@
µ
M

(�)
a(m)|b(n)

µ(s�1) = 0 ,
(6.3)

where the indices a, b within each group are symmetrised, while � is an additional label
that accounts for possible multiplicities.

Explicitly, for s = 3 we have, to begin with,

Kab|cd
µ⌫

⌘ Jac
(µ
Jdb

⌫) + Jad
(µ
Jcb

⌫) + · · · , (6.4a)

Mab|c
µ⌫

⌘ Pa
(µ
Jbc

⌫) + Pb
(µ
Jac

⌫) + · · · , (6.4b)

Qab
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⌘ 2

✓
Pa

(µ
Pb

⌫)
�

1

D
⌘ab⌘

cd
Pc

(µ
Pd

⌫)

◆
, (6.4c)

where in the first two definitions we omitted the terms that are necessary to implement
a traceless projection in the Latin indices (as in eq. (6.4c)) and that can be read off
from eqs. (4.7) and (4.8). These rank-two tensors are also traceless in the Greek indices
(⌘µ⌫(Qab)µ⌫ = 0 etc.) and they actually form a basis for the subspace of traceless Killing
tensors of rank two. They can thus be interpreted as the generators of the global symme-
tries of a massless spin-three field and they correspond to the tensors introduced in D = 3

in eq. (3.61) (in that case Kab|cd vanishes identically due to the low dimension). They have
homogeneity 2, 1 and 0 respectively. To complete the basis, we also have to consider the
traces (in the Latin indices) of all admissible symmetrised products of Killing vectors, i.e.

Sab
µ⌫

⌘ 2

✓
⌘
cd
Jac

(µ
Jdb
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�
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⌘ab⌘

cd
⌘
ef
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, (6.5a)
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, (6.5b)

(J 2)µ⌫ ⌘
1
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J

(µ
ac Jdb

⌫)
, (6.5c)

with homogeneity 2, 1 and 2, together with

(P2)µ⌫ ⌘ ⌘
ab
Pa

(µ
Pb

⌫) = ⌘
µ⌫

, (6.6)
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– 53 –with homogeneity 0. Notice that we listed almost all combinations that appear at the
beginning of section 4.1.1, with the exception of those in eq. (4.9). The reason is that, due
to the specific realisation of the Poincaré algebra introduced in (6.2), one has

Iabc
µ⌫

⌘ 2J[ab
(µ
Pc]

⌫) = 0 , Iabcd
µ⌫

⌘ 2J[ab
(µ
Jcd]

⌫) = 0 . (6.7)

The key observation to proceed is that ⌘
µ⌫ behaves like the identity: its Schouten

bracket with any Killing tensor vanishes, and this is actually an alternative way to char-
acterise Killing tensors [88]. Moreover — given the constraints (6.6) and (6.7) — if one
interprets a symmetrised product with ⌘

µ⌫ (as, e.g., ⌘(µ⌫Pa
⇢)) as a product with the identity

(as we already did in eq. (3.63)) then the spectrum of independent generators is manifestly
the same as that of the algebras AD[µ] defined in eq. (2.58). More precisely, with the iden-
tification ⌘

µ⌫
' id and using the associative product induced by the symmetrised product

of tensors, the Schouten algebra corresponds to the coset algebra obtained by evaluating
the Poincaré UEA on a representation satisfying P

2
⇠ ⌫ id, Iabc ⇠ 0, Iabcd ⇠ 0 and with all

higher-order Casimir operators vanishing (because they are all proportional to the Pauli-
Lubanski tensor (4.17) that is built out of Iabc). We denote this algebra by gSchD and in
section 6.1.2 we shall see explicitly that these conditions also emerge in an Inönü-Wigner
contraction of AD[µ]. This is the same setup that we already encountered in D = 3 in
section 3.2 and, like in that case, we also remark that one can always rescale at will Pa,
because the number of translations on the left- and right-hand sides of any non-Abelian
commutator is always the same (in iso(1, D�1) the adjoint action of Pa either gives another
translation or zero, differently to what happens in so(2, D � 1)). Therefore ⌫ is not a true
parameter in the algebra gSchD and it can be fixed to an arbitrary value. The previous
construction also agrees with the definition in [33] of a higher-spin algebra in Minkowski
space, named “off-shell”, as the centraliser of P

2 in the Poincaré UEA, realised through
Weyl-ordered polynomials of the operators x̂

µ and P̂
µ.

To have a better grasp on the structure of the algebras SchD and gSchD, one can
compute the Schouten bracket of the tensors (6.4) and (6.5) among themselves or with the
Killing vectors (6.2). For the massless sector one obtains

[Pa,Kbc|de]
µ⌫ = �

�
⌘abMde|c

µ⌫ + ⌘acMde|b
µ⌫ + ⌘adMbc|e

µ⌫ + ⌘aeMbc|d
µ⌫
�

�
2

D � 2

�
⌘d(bMc)e|a

µ⌫ + ⌘e(bMc)d|a
µ⌫

� ⌘bcMde|a
µ⌫

� ⌘deMbc|a
µ⌫
�
, (6.8a)

[Pa,Mbc|d]
µ⌫ =

�
⌘adQbc

µ⌫
� ⌘a(bQc)d

µ⌫
�
+

1

D � 1

�
⌘bcQad

µ⌫
� ⌘d(bQc)a

µ⌫
�
, (6.8b)

[Pa,Qbc]
µ⌫ = 0 , (6.8c)

while the additional generators satisfy, e.g.,

[Pa, Ib]
µ⌫ = �Qab

µ⌫ +
2(D � 1)

D
⌘ab (P

2)µ⌫ . (6.9)

Brackets with Jab
µ take instead the same form as in (4.19) and (C.2) since all rank-two

tensors are given by products of Killing vectors. Notice that, compared to the commutators
(4.20) of the algebra ihsD, one obtains a non-vanishing contribution on the right-hand side
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Schouten bracket algebra as HS algebra?

Andrea Campoleoni - UMONS

Double interpretation for the Schouten bracket algebra 

• Rigid symmetries for unconstrained Fronsdal transformations 

• Inönü-Wigner contraction of the rigid symmetries of partially-
massless fields

Any examples in flat space? 

• Higher-derivative theories: 

• Partially-massless-like eom: 

where we used the same conventions as in eq. (6.1). These equations of motion follow from
the quadratic action

S =

Z
p
�g d

D
x'

µ(s)

✓⇥
⇤�m

2(D, s, t)
⇤
'µ(s) �

s(D + 2s� 4)

(t+ 1)(D + 2s� t� 4)
r̄µr̄ · 'µ(s�1)

◆

(6.20)
and the mass-like term they contain coincides with that appearing in the Fierz system (2.51).
For t = 0 one recovers the equations of motion of a massless field in their Maxwell-like form
[97], while for the other values of t one gets more complicated spectra. In particular, for
s = 2 and t = 1 one obtains the equations of motion introduced in [130] (and discussed in
[102]), describing a partially-massless spin-two field coupled, in a non-unitary way, to an
additional spin-one field. In the limit L ! 1 one gets the equations of motion

⇤'µ(s) �
s(D + 2s� 4)

(t+ 1)(D + 2s� t� 4)

✓
@µ@ · 'µ(s�1) �

s� 1

D + 2(s� 2)
gµµ@ · @ · 'µ(s�2)

◆
= 0

(6.21)
that still admit gauge symmetries of the form

�'µ(s) =
s!

(s� t� 1)!
@µ · · · @µ✏µ(s�t�1) , with ✏µ(s�t�3)�

� = @ · ✏µ(s�t�2) = 0 . (6.22)

The vacuum-preserving gauge symmetries of eqs. (6.21) thus satisfy the higher-order
Killing equation (2.54) with the additional constraints (2.55). The gauge theories (6.21)
are therefore natural candidates to substitute the partially-massless field theories with the
corresponding gauge transformations in the interpretation of the role of the generators of
the algebra gSchD obtained as a contraction of the algebra AD[µ] in section 6.1. The price
to pay is that the spectra of propagating d.o.f. of the two models do not coincide. It will
be interesting to check more in detail if the algebras AD[µ] may be interpreted also as the
global symmetries of a suitable combination of field equations of the form (6.18) on an Anti
de Sitter background and if a more natural interpretation of the algebra gSchD is available
in the context of field theories with Carrollian-conformal symmetry.

6.2.2 Higher-derivative theories

A series of higher-derivative equations of motion involving a traceful tensor 'µ(s) that are
invariant under gauge transformations

�'µ(s) = @µ✏µ(s�1) (6.23)

generated by parameters satisfying different trace constraints were introduced in [128] (see
also [127]). In this context, we are interested in the last equations in that hierarchy: they
can be defined starting from the de Wit and Freedmann higher-spin curvatures [131]

R⇢(s) , µ(s) ⌘

sX

k=0

(�1)k
✓
s

k

◆
@
s�k
⇢ @

k
µ '⇢(k)µ(s�k) (6.24)

and imposing the conditions

R
[ s2 ]µ(s) = 0 for s even , (6.25a)

@ · R
[ s�1

2 ]
µ(s) = 0 for s odd , (6.25b)
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For t = 0 one recovers the equations of motion of a massless field in their Maxwell-like form
[97], while for the other values of t one gets more complicated spectra. In particular, for
s = 2 and t = 1 one obtains the equations of motion introduced in [130] (and discussed in
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The vacuum-preserving gauge symmetries of eqs. (6.21) thus satisfy the higher-order
Killing equation (2.54) with the additional constraints (2.55). The gauge theories (6.21)
are therefore natural candidates to substitute the partially-massless field theories with the
corresponding gauge transformations in the interpretation of the role of the generators of
the algebra gSchD obtained as a contraction of the algebra AD[µ] in section 6.1. The price
to pay is that the spectra of propagating d.o.f. of the two models do not coincide. It will
be interesting to check more in detail if the algebras AD[µ] may be interpreted also as the
global symmetries of a suitable combination of field equations of the form (6.18) on an Anti
de Sitter background and if a more natural interpretation of the algebra gSchD is available
in the context of field theories with Carrollian-conformal symmetry.

6.2.2 Higher-derivative theories

A series of higher-derivative equations of motion involving a traceful tensor 'µ(s) that are
invariant under gauge transformations
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generated by parameters satisfying different trace constraints were introduced in [128] (see
also [127]). In this context, we are interested in the last equations in that hierarchy: they
can be defined starting from the de Wit and Freedmann higher-spin curvatures [131]
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• Asymptotic symmetries? 

• Modules associated to our algebras? 

• Linearised curvatures? 

• Recovering the algebras in interacting theories?

What’s next?


