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Abstract. In this paper, the provesses of exploration and of ineremen-
tal learning in the robot navigation task are studied using the dynamical
systems approach. A nearal network model which performs the forward
modeling, planning, consolidation learning and novelty rewarding is used
for the robot experiments. Our experiments showed that the robot re-
peated a few variation of travel patterns in the beginning of the explo-
ration, and later the robot explored more diversely in the workspace by
combining and mutating the previously experienced patterns. Our anal-
vsis indicates that internal confusion due to immature learning plays the
role of a catalyst in generating diverse action sequences. [t is found that
these diverse exploratory travels enable the robot to acquire the rational
modeling of the environment in the end.

1 Introduction

One of the debates in behavior-based robotics is whether or not agents should
possess higher-order cognitive functions such as internal modeling, planning and
reasoning. Most researchers in behavior-based robotics have rejected the "repre-
sentation and manipulation” framework since they consider that the representa-
tion cannot be grounded and that the mental manipulation of the representation
cannot be situated adequately in the behavioral context of the robot in the real
world environment. This argument seems to he valid if the agent’s mental ar-
chitecture employs the symbolist framework. One of the major difficulties in the
symbolist framework is that the logical inference mechanism utilized in planning
or reasoning assumes completely consistent model of the world. This presump-
tion cannot be satisfied if the learning should be conducted dynamically as in
animal and in human adaptation processes. It is. however, also true that the
embodiment of higher-order cognitive functions is crucial if we attempt to re-
construct an intelligence at the human level in robots, since even two year-old
human infants are said to possess primitive capabilities of modeling and planning
within their adopted environment.

We consider that an alternative to the symbolist framework can he found in
the dynamical systems approach [4, 1] in which the internal cognitive processes
are considered to exist in tight coupling with the external environmental pro-
cesses [1]. Our previous study in navigation learning demonstrated that a robot
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using a recurrent neural net {RNN) is able to learn the "grammatical” structure
hidden in the enviromment, as embedded in attractor dynamics with a fractal
structure, from the experiences of sensory-motor interactions [8]. The forward
dynamics [3] of the RNN generates a mental image of future behavior sequences
driven by the acquired attractor dynamies. The crucial argument in that study
is that the situatedness of the higher cognitive processes are explained on the
hasis of the entrainment of the internal dynamiecs by the environmental dynam-
irs. However, a drawback of that study was that the learning was conducted in
an off-line manner i.e. the navigation could be conducted only after complete
learning of the environment.

In the current paper. we study the development of the interactive processes
hetween learning and acting in the robot’s exploration of its environment. By
conducting real robot experiments, we focus on how the robot interacts with its
enviromment and how it makes sense of the world by utilizing its limited expe-
riences. Qur experiment exhibits an interesting result: we find that the diverse
exploratory behaviors are generated through taking advantage of the state of
confusion in the internal modeling in the middle of the learning process. Our
analysis, based on the dynamical systems scheme clarifies the underlying mech-
anism.

2 The Model

[n this section we introduce a neural net model which enables the system to per-
form exploratory behavior, goal-directed planning and behavior-based learning.
The neuwral net architecture employed has been built by combining pre-existing
neural net schemes. In the learning process, both reinforcement learning and
prediction learning are conducted [11]. Using reinforcement learning, the action-
policies for better rewarding are reinforced, through which the most preferred
action in the current state is selected. In prediction learning, the forward model
[3] is adapted to extract the causality between the action and the sensation. In
goal-directed planning, the inverse dynamics scheme [11, 3] is applied to the for-
ward model in order to generate possible action sequences. In this planning pro-
cess, the action policy adapted using reinforcement learning provides heuristies
for searching for the better rewarded acion sequences. In the current formulation,
rewards are given to the systemn based on the novelty which the system experi-
ences for each exploration action [10, 6]. In other words, when the system cannat
predict the next sensation in terms of the current action, the current action is
rewarded. In addition, the prediction learning attempts to learn to predict how
much prediction error it will make. By combining this novelty-rewarding scheme
with the reinforcement learning and with the prediction learning schemes, the
system tends to explore the workspace regions with which it is unfamiliar. As
the novelty rewarding scheme continues to bring new experiences to the system,
the system is forced to operate in a nonequilibrium state in which learning as
well as acting cannot always be rationalized. The main purpose of this modeling
is to investigate the possible interplay between exploration and learning when
the system develops in a nonequilibrinm dynamical manner.
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2.1 The neural net architecture

A RNN architecture is employed in our model as shown in Fig 1. The RNN
receives the current sensory input s;, the current reward signal r;, and the current
action #;. The RNN then outputs the prediction of the next sensory input §,.,.
the reward signal fi4y, and its preference for the next action 4, which is
expected to obtain the maximumn reward in the future. For the novelty rewarding,
the current normalized prediction error for the sensory inputs is used to evaluate
the current novelty reward. It is noted that the reward is generated internally
and we observe that the RNN learns to prediet it (see section 3.2). The RNN has
context units ¢, in the input and output layers in order to account for the internal
memory state (See Ref.[8] for more details of the role of context activation in
navigation learning. )
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Fig. 1. The RNX architecture.

(A) Learning: The RNN learns to predict the next sensory inputs and the
rewards corresponding to the current sensory inputs, the action selection and the
internal state. This corresponds to the forward model learning. The preference
for the next action is learned by a variant of the profit sharing method [2] in
order to propagate the decayed reward signal backwards in time. This means
that if the current action selection leads to an unpredictable experience, this
action selection is reinforced. This corresponds to reinforcement learning. Both
learning processes are executed in the RXN using the back-propagation through
time (BPTT) algorithm.

(B) Planning: The objective of planning is to find the action plan r =
l{zg, zyy...7) which generates the path to maximize the future calmative re-
wards, The action sequence is dynamically computed by using contributions
both from the forward model part and from the action policy part. [nverse dy-
namics [3] are applied to the forward model in order to obtain the update of
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the action plan Axr= for maximizing the calmative reward expected in the future
sequence, We consider the following energy function by taking the negative of
the calmative reward from the current time step to the terminal step 7:

Em{z+) = ~ iﬂ'i{‘i+l {1

=0

where o is the decay coefficient of the reward. The back-propagation through
time (BPTT) algorithm [5] is used to compute the update to the action sequence
which minimizes the energy assumed in the model part. In addition to this, the
action policy influences the planning dynamics in that the difference hetween the
preferred action and the planned action at each step is minimized. The update
to the action at each future step is obtained by taking the sum of both parts of
the contributions and adding a Gaussian noise . The update to the action plan

is therefore
—:ﬁEml:;.rm} 2

dr;

The Gaussian noise term is emploved to prevent the plan dynamics being cap-
tired in a local minitnum. The value of kn is changed in proportion to the value
of Em. Therefore the plan search dynamics become stabilized when the energy is
minimized; otherwise, it continues to be activated, Here, the reader is reminded
that the contributions to the update from the forward model and from the action
policy do not always agree with each other in the course of the exploration pro-
cesses sinee the overall system dynamiecs are characterized by highly nonlinear
and nonequilibrinm dynamies.

(C) Incremental learning by consolidation: The robot learns what it
experienced incrementally after each travel is terminated by using the so-called
consolidation learning scheme [9] which has been developed as inspired by the
biological observation of the memory consolidation [7] during sleep in mammals.
In our system, a new episodic sequence experienced in the current travel is stored
in the temporal memory. In the cousolidation process, the RNN generates the
imaginary sensory action sequence by rehearsing from the long term memory pre-
learned. This rehearsal can be performed by repeating "planning”, as described
in the previous section, without actually moving - as in dreaming. Then, the
BXNN is re-trained using hoth the new episodic sequence stored in the temporal
memory and the rehearsed sequences generated from the pre-learned memory
simultaneously. This combination of rehearsal and learning allows the memory
system to be re-organized without suffering from some catastrophic interference
between the novel experiences and the pre-learned memory.

Ar;=e-| kr- (&% — z:) + kn - n) (2)

3 Experiment

3.1 Task setting

A mobile robot as shown in Fig 2 {a) is used for the experiment. The robot is
equipped with range sensors and a color vision camera on its head. Fig 2 (h)
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Fig. 2. (a) The robot cmployed in the experiment and (b} the adopted workspace.

shows the adopted workspace. The hasic behavior of the robot is determined
using a set of pre-programmed action modules for actions such as wall-following,
wall-switching and colored-object-approach. The actions are switched between
by the RNN using branching. Two cases of branching are considered: {a) the
robot, after turning a corner, determines whether it will continue to follow the
current wall on its left side or instead to leave the current wall and to move
forward diagonally at 43 degrees to the right until it encounters another wall;
and (b) the robot, after finding a colored object, determines whether to continue
the wall-following or to approach the colored object. In this setting, the action
can he represented by one bit of information which represents whether or not
to hranch. The RNN architecture receives two types of sensory input at each
hranch point. Oue is the travel vector which represents what distance and from
which direction the robot has traveled since the previous brauch. These values are
measured by taking the sum and the difference between the left and right wheels’s
rotation angles. The other sensory input is the eategorical output of the visual
image obtained when the rohot encounters a colored ohject. The robot plans
its future action sequence dynamically while it travels and receives the sensory
inputs at each branch encountered. The rohot starts its exploration travel from
a fixed home position and the exploration is terminated when the travel takes it
ontside a predefined boundary. (The home position and the boundary predefined
in our experiment is shown in Fig 2 (b).) At the moment of termination, the
RNXN receives the tenmination sign in its sensory input and the robot is brought
hack to the home position manually. Following this, the consolidation process
takes place in which the temporary stored sequence is learned using 10 rehearsal
sequences. After the consolidation, exploration by the rohot is resumed.

3.2 Results

The robot repeated the exploration travels 20 times in the experiment. This ex-
periment was conducted three times under the same conditions. Fig 3 represents
the average prediction error for each travel sequence in the three experimental
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Fig. 3. The history of the prediction error for the three experiment cases.

cases. For all three cases, on average that the prediction error gradually decreases
as the exploration is proceeds.

It is interesting to observe the rehearsing during the conselidation learn-
ing since the contents of the rehearsing activities represent what the rohot has
learned so far. Fig 4 shows how the diversity of the rehearsed plans at each con-
solidation learning process change as the exploration proceeds. The lower graphs
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Fig. 4. Changes in the diversity of the rehearsed plans during the three exploration
experiments.

in the figure shows [D of all rehiearsed plans generated during each consolidation
learning period; the upper graph represent the corresponding predicted rewards
of the plans generated. (The ID is assigned for each plan generated by encoding
the bit pattern of the branching sequence, a maximumn of 10 time steps in length,
into numbers from 0 to 512.) It is ohserved that the diversity of plans is increased
and that the predicted reward is decreased as the exploration trial is continued.
We observed that the rehearsed plans are generated not just by repeating the



285

sequences previously experienced but by combining previously experienced se-
quences into new ones. Since the rehearsing directly affects the re-organization of
the learned contents, the diversity generated in rehearsing leads to the diversity
in actual travel,

In the following, we examine how the diverse travel sequences are gener-
ated in the course of exploration. Fig 5 shows all 20 trajectories of the robot’s
travel observed in one experimental case (experiment-1). In the initial period

Fig. 5. The trajectories of the robot exploration travel for one experimental case. The
travel sequence nmmber is given.,

of the exploration, the robot tends to repeat the same branching sequences. As
is evident in Fig 5, the same trajectory is repeated for the first two travel se-
quences. For the third sequence, branching changes and a different trajectory is
generated. This trajectory is repeated in the next two travel sequences. The tra-
jectory in the sixth travel sequence seems to be generated by combining the two
travel sequences previously experienced. We summarize that the novelty reward-
ing scheme causes the observed repetitions and variations in the travel. When
the robot undergoes a previously unexperienced travel sequence, the branch-
ing sequence experienced is reinforced strongly because of its unpredictability.
When the same trajectory is repeatedly generated through reinforcement, the
sequence becomes predictable and is rewarded less. As a result, the probability
of modifying the current travel is increased.

An interesting question is how novel action sequences are generated in the

286

planning process. What we found is that novel branching sequences are origi-
nated not merely by the noise term in the planning dynamics but also hy the
internal confusion cansed by the incremental learning. This point is illustrated
by considering an example seen in the 10th travel sequence. In this travel se-
quence, the robot, starting from the home position, continued to follow the wall
after passing cornerl, then it branched to another wall after passing corner2.
This branching at corner? is a novel experience for the robot. We investigated
how this branching decision was generated by examining the recorded planning
process. Fig 6 shows the actual planning processes which took place immediately
hefore the branching was made at corner2. In Fig 6 (a) each column consisting of
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Fig. 6. (a) The time history of plan generation at the corner2, () the predicted reward
of the corresponding plan.

white and black squares represents a hranching sequence plan at each time step
of the planning process, where the black and white squares denote branching
and non-branching, respectively. Fig 6 (b) indicates the predicted reward for the
plan generated. At the beginning of the planning process, a plan of not branch-
ing twice is generated with a low predicted reward. This plan will repeat the Sth
travel sequence if actnally realized. At the end of the planning process, plans
are generated such that branching actions are planned Lo oceur repeatedly after
passing corner2 with an expectation of a higher reward, even though such action
sequences have never been experienced. It is noted that this type of plan was
wot observed when the robot approached the sane corner in its earlier travels.
Further examination showed that the lookahead prediction of the sensory se-
quences after branching at corner? and at cornerl are mostly the same. This can
be interpreted as meaning that the robot hypothesized that branching at any
corner would lead to better chances for encountering novel experiences hecause
it applied the situation after branching at cornerl to consider the situation at
corner?. (Indeed. the travel will continue as long as branching is selected at ap-
proaching corners without terminating the travel by going out of the workspace
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houndary.) We conclude that the novel action of branching at corner2 results
from the expectation of a higher reward which is falsely anticipated by means
of fake memory generated in the course of consolidating immature experience.
This phenomenon of the novel action trial being generated by fake memeory and
the internal confusion was seen frequently in the middle of the learning process.

Finally, we investigated how the internal modeling develops by examining the
evolution of the RNN attractor. Fig 7 shows the attractor which appeared in the
phase space of the RNN at different stages in experiment-1. The phase plots were
drawn by iteratively activating the RNN in the closed-loop mode with inputs
comprising 4000 steps of random branching action sequences. The generated
sequence of the context units activation are plotted in the two dimensional phase
space. In Fig 7, cluster structures consisting of multiple segments are clearly seen
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Fig.7T. The RNN attractor appeared at a certain stage of the learning process in
experiment-1. The learning stage is given at the base of each plot.

in the later periods of the exploration travel. Our examination clarified that this
set of cluster segments represents the global attractor. Further analysis indicated
that in the phase plots in Fig 7 (c¢) and Fig 7 (d) each segment corresponds
uniquely to each branching position in the workspace and also that the graph
structures are topologically equivalent between that of the state transition in the
phase space and that of branching of the robot trajectories in the environment.
In this condition, it is said that the “dynamical closure” is generated in the
attractor since an equivalence of the closed graph structure is generated in the
phase space. However, such structures were barely seen in the phase plots in
Fig 7 (a) and Fig 7 (b). While the learning process is "immature”, the shape
of the attractor varies substantially after each learning and neural dynamics
exhibits diverse trajectories in the phase space and the robot behaves as if it
were confused. In the meanwhile, the attractor develops step by step as the
diverse exploration repeated and finally the dynamical closure is organized in
the internal neural dynamics.
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4 Discussion and Conclusion

In the experiments, it was shown that the robot learned incrementally about
its workspace through exploration and that the robot was eventually successful
in obtaining a rational model of the workspace. However, the emphasis in this
study is on the ohservation of dynamical processes before the rational model
is achieved. In the heginning, a few travel sequences are repeated and later
some combinations of them are made. In the middle period, novel actions are
frequently tried with a false expectation of the future consequences. The confu-
sion due to the immaturity turns ont to be heneficial since it acts as a catalyst
for generating the diverse hehavior required to explore the environment. Such
diverse hehavior enables the robot to acquire the rational model later.

Our experimental studies, however, are limited in a sense that (a) the robot
is manually recovered when it goes out of the workspace boundary, (b) the
environment is static. Qur future study will address these prohlems.
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