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Morphology dictated heterogeneous dynamics in
two-dimensional aggregates

Tamoghna Das,†a T. Lookmanb and M. M. Bandi*c

Particulate aggregates occur in a variety of non-equilibrium steady-state morphologies ranging from finite-

size compact crystalline structures to non-compact string-like conformations. This diversity is due to the

competition between pair-wise short range attraction and long range repulsion between particles. We

identify different microscopic mechanisms in action by following the simulated particle trajectories for

different morphologies in two dimensions at a fixed density and temperature. In particular, we show that the

compact clusters are governed by symmetric caging of particles by their nearest neighbors while sidewise

asymmetric binding of particles leads to non-compact aggregates. The measured timescales for these two

mechanisms are found to be distinctly different providing phenomenological evidence of a relation between

microstructure and dynamics of particulate aggregates. Supporting these findings, the time dependent

diffusivity is observed to differ across the morphological hierarchy, while the average long-time dynamics is,

in general, sub-diffusive at ‘low’ temperatures. Finally, one generic relation between diffusivity and structural

randomness, applicable to simple equilibrium systems, is validated for complex aggregate forming systems

through further analysis of the same system at different temperatures.

1 Introduction

Relating the morphology and dynamics of non-equilibrium
systems has remained a challenge despite concerted theoretical
and experimental efforts1–4 over the years. Systems driven out
of equilibrium, such as glassy and granular materials, exhibit
dynamic structural order,5,6 which often extends over multiple
length and time scales without any clear separation between
them. The effect of geometry on dynamics7,8 is also expected in
systems confined by external fields or porous media. Transport
within crowded environments such as living cells9 presents yet
another example where spatial structure and dynamics show
strong co-dependence. Yet another emergent and active field of
research focuses on artificially assembled superstructures of
particles10–16 at nanoscale and mesoscale, by taking advantage
of recent advances in chemical synthesis and experimental
techniques. Such fabricated assembly of particles provides an
elegant model system to understand the complex interplay
between microstructure and microscopic dynamics of real systems
for several reasons. The degree of (dis-)order in such systems

can be easily tuned in situ and simultaneous precise quantifications
are possible via standard experimental techniques such as
electron microscopy and X-ray scattering. Further, the possibility
of achieving a targeted response from a specific superstructure
promises the essential technological incentives to study these
particulate assemblies thoroughly.

Here, we present a detailed simulation study of both global
and local dynamics of a generic non-equilibrium pattern forming
particulate system, namely, two-dimensional (2D) aggregates.
By following the steady state trajectories simulated by molecular
dynamics, we provide phenomenological evidence of direct
correspondence between the microscopic dynamics and structural
hierarchy in 2D aggregates. Particulate aggregates may occur in a
broad range of structural randomness (or order)17–24 between liquids
and crystalline solids due to the competition between pair-wise short
range attraction and long range repulsion. The presence of multiple
length scales due to competing interactions introduces geometric
frustration at the interaction level and complex structural,
thermodynamic and dynamic behavior are expected as a result.
Such systems were introduced25 as a natural extension of van
der Waals theory of simple liquids with a single length and
time scale. The unusual thermodynamics originating from
multi-length scale physics has also been extensively explored26,27

theoretically. However, any experimental realization of such a
system has had to wait for sophisticated chemical processing of
colloidal and nanoparticle systems until very recently.

In general, the aggregates are experimentally formed
by quenching a high-temperature equilibrium liquid28,29 to a
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much lower temperature. While such a dynamical preparation
protocol is useful in practice, it invariably drives the system out
of equilibrium. The inherent geometric frustration together with
the non-equilibrium dynamics, then, pose serious difficulties for
unambiguous identification of the key elements behind the
resulting rich phenomenology. Different mechanisms such as
diffusion-limited30 and reaction-limited aggregation31 have been
reported. Stemming from a fast quench, the glass transition
scenario has been conjectured32,33 and quite thoroughly inves-
tigated. To describe the phase behavior of such systems, both
equilibrium routes34,35 and kinetic viewpoint,36–38 have also
been explored quite extensively. However, a conclusive theo-
retical understanding of the process is yet to be achieved.39–43

To focus on the effect of geometric frustration alone, a ‘slow’
cooling protocol is adapted, in the present study, to achieve
aggregate formation in contrast to the usual quench from high
temperature. Upon reaching the desired value, the final tem-
perature is maintained constant over a long observation time.
The steady state dynamics are non-equilibrium, sub-diffusive
and heterogeneous for all aggregate morphologies. While phase
separation seems to affect the overall dynamics of the system,
local slow dynamics results from the reduced thermal fluctua-
tions at final ‘low’ temperatures. Individual particle trajectories
and their spatio-temporal correlations reveal that systems with
different morphologies under same thermodynamic conditions
evolve via different microscopic dynamics. One distinct change
in the microscopic time scales across the morphological hierarchy
of aggregates is identified and a scaling relation between the
average dynamics and structural randomness of the system is
demonstrated.

The organization of the paper is as follows: to set up the
background for this study, we provide the essential information
in Section 2 in three parts, (i) the specific form and tuning
parameters of competing interactions, (ii) the details of molecular
dynamics simulation and cooling protocol used to prepare the
model system and (iii) a brief description of the morphological
variations obtained by tuning the interactions. In Section 3, we
elaborate the main results on dynamics in two parts, (i) comparison
of particle dynamics at a fixed low temperature for different
morphologies and (ii) global dynamics and its temperature
dependence. The results are summarized and further implica-
tions are discussed in Section 4.

2 Model, methods and morphology
The model system with competing interactions

Competing interactions are necessary for aggregate formation44

and can occur in diverse physical settings,45–48 each having its
own set of control parameters.49 Our choice of model system is a
reliable representation of globular proteins,50 engineered
colloids51 and nanoparticles.52 In this model, the short-range
attraction and long-range repulsion are realized by a generalized
Lennard-Jones potential and a pair-wise potential of Yukawa
form, respectively,

fSA = 4e[(s/r)2a � (s/r)a] (1)

fLR = (As/r)exp(�r/x) (2)

The length and energy scales are set by s and e respectively. The
range of attraction realized by the well-width of the bare 2a � a
potential is controlled by a. This range is 0.2s for our choice a =
18 while it extends to 2.5s for the usual Lennard-Jones potential
with a = 6. We note that the thermodynamic properties of a
particulate system with bare attraction53 are independent of a
for a Z 18. The Yukawa part implicitly models the long-range
repulsive effect of surrounding weakly polar media. The strength
of repulsion A and the screening length x are measured in e and s
units respectively. The implicit solvent description is particularly
relevant for the polymer grafted nanoparticle systems54 where the
sparse monomers act as an effective medium in the absence of a
real one. The effective centro-symmetric interaction, f = fSA + fLR,
has a positive energy barrier at finite distance, which is separated
from the steep hard core repulsion by an attractive minimum
(Fig. 1). The height and extent of the barrier can be controlled by A
and x. For the present study, we limit ourselves over a restricted
parameter space to focus on the dynamics. Specifically, we fix
the value of repulsion strength, A, throughout the study, to 4
(in e units) to match the strength of attraction exactly. The range
of repulsion set by the screening length, x is varied from 0.5 to
0.8 (in s units). Note that the global attractive minimum of the
effective pair-potential f becomes local and positive as x is
increased from 0.5 to 0.8 (Fig. 1). The low temperature local
dynamics of the system is compared only for these two limiting
cases which produce distinctly different morphology. The change
in morphology is briefly described separately at the end of this
section. Temperature dependence of the global dynamics is
presented for the whole range of x.

Simulation details and cooling protocol

We consider a 2D system of interacting mono-disperse particles
at fixed density r = 0.4. The initial configuration is a random
non-overlapping arrangement of N = 56 000 particles of unit
mass in a 376s � 372s box with periodic boundary conditions
along all directions. Particle trajectories in the canonical ensemble
are generated by following molecular dynamics (MD) at constant
number–area–temperature (NAT). Temperature is measured in e
units with the Boltzmann constant, kB = 1 and is maintained by a

Fig. 1 The form of effective interaction f(r) is shown for two different
values of x = 0.5 and 0.8 setting A = 4.0 and a = 18. Note that the global
attractive minimum becomes local with increasing x.
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Langevin thermostat.55 The motion of i-th particle with position
vector ri is expressed as follows,

€ri ¼ �
X
jai

rfðrÞ � n _ri þ zi (3)

considering the force due to interaction f(r) and frictional drag
n:ri from implicit media experienced by the particle. zi is a random
force with zero mean and Gaussian variance, hzi(t0)zj (t + t0)i =
2kB(T/n)di,jd(t). Numerical integration is performed by using the
velocity Verlet algorithm, as implemented in the LAMMPS
simulation package,56 with time steps dt = 10�3t where t ¼ s=

ffiffi
e
p

a is for unit mass. The timescale of the simulation is set by t
and all temporal data presented later on are expressed in this
unit. The system is first equilibrated at temperature Ti = 1.0 to
form a simple liquid. The temperature of the equilibrated
liquid is then linearly ramped down over 9.5 � 107 MD steps
to final temperature Tf = 0.05 (see Fig. 2(a)). The temperature of
the system thus drops by only 10�4e over unit time t. For
comparison, we note that the equilibrium liquid at Ti = 1.0
goes from the ballistic to diffusive regime in time slightly
longer than t. In other words, the system is allowed to lose
only one unit of (kinetic) energy over a time period four orders
of magnitude longer than the equilibrium diffusive time scale
of the same. A slow cooling is chosen over the traditional fast

quench to limit the influence of preparation rate dependence
on the microscopic dynamics and focus on the effect of geometric
frustration encoded by multiple length scales of the competing
pair-wise interactions. Following the same cooling rate, systems at
different final temperatures are also prepared by stopping the
cooling at desired Tf starting from the same or statistically similar
initial equilibrium configurations. We note that the system
behaves as an equilibrium liquid over a range of final tempera-
tures up to Tf B 0.2.

Instantaneous temperature or kinetic energy per particle ek

is shown in Fig. 2(a) during linear cooling. The potential energy
per particle ep, following ek, shows an initial linear decay but
drops abruptly around Tf B 0.2. We note that the gas–liquid
critical temperature of the bare attractive potential fSA is
Tc = 0.18 � 0.01.57 This sharp drop of ep close to Tc is indicative
of the effect of a phase separation process in the system. After
reaching a desired final temperature, it is maintained by the
same thermostat over a period of 103t. This is our observation
period when the trajectories are saved for further analysis.
During this constant temperature observation time of three
decades, ep continues to decay monotonically, which can be
fitted well with a stretched exponential or a double-exponential
function. To show this non-exponential time evolution of
potential energy at constant temperature, we have plotted the
scaled potential energy, �ep = ep(t)/ep(0) for different x (see
Fig. 2(b)). Please note that ep is negative for x = 0.5. It increases
with increasing x and becomes positive for x = 0.8. Primary
analysis of the temporal evolution of fluctuations in �ep shows
weak ergodicity breaking in absence of any external perturba-
tion which should be credited to the geometric frustration
originating from competing interactions. However, any conclu-
sive remark in this regard requires further detailed study which
is underway and will be reported elsewhere. In essence, the
systems are yet to reach equilibrium even after this large
waiting time. During this ‘post cooling’ period, the temperature
fluctuations in the system remain very small and steady (see
Fig. 2(b), inset). Most importantly, the size distribution of
aggregates has reached its steady state, which is evident from
the time-lapsed snapshots presented next in Fig. 3(a) and (b).
Keeping these in mind, we expect that our observation time is
sufficient to gather reliable statistics for both global and local
dynamics of the system. Further, all the results presented next
are averaged over 100 statistically independent initial conditions
chosen from the equilibrium state of the respective systems.

Morphological variations from competing interactions

Aggregates may assume diverse morphologies ranging from
finite-size non-compact to compact to percolated gel structures
as a function of decreasing repulsion against attraction. In a
previous study,58 we have presented the structural hierarchy of
the same model system for different realizations of competition
controlled by a, A and x at a constant density and temperature.
Percolated structures appearing at lower values of x (o0.5), are
excluded from the present study. Here, we briefly describe
two representative cases, x = 0.5 and 0.8, showing finite-size
compact and non-compact aggregates, respectively. Note the

Fig. 2 (a) Linear cooling denoted by decreasing average instantaneous
kinetic energy ek (blue) and corresponding variation of average potential
energy ep (purple) are plotted for x = 0.5 and r = 0.4. Please note the sharp
decrease in ep near ek = 0.2 which is close to the gas–liquid critical
temperature for a system with bare attractive potential. Same linear
cooling protocol is followed for other values of x reported and similar
sharp drop in ep is observed around nearly same ek. (Inset) Shows the
temporal evolution of temperature fluctuation (DT) over the ‘observation
period’. The fluctuation is measured by the difference between instantaneous
kinetic energy and the mean kinetic energy over this time. (b) Time
evolution of �ep = ep(t)/ep(0) after the desired final temperature Tf = 0.05
is reached. (Inset) Shows the temperature fluctuation over this time. The
systems, x = 0.8 (green) and x = 0.5 (red) are yet to reach equilibrium even
after 103t. Note that average ep changes sign from negative to positive as x
is changed from 0.5 to 0.8.
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dominant attraction well for x = 0.5 (Fig. 1), which is comple-
mented by a small repulsive barrier slowly decaying at large r.
The resulting configuration consists of perfect crystalline
islands of exponentially distributed size. When x is raised to
0.8, the repulsive barrier increases significantly and the attrac-
tive minimum close to the particle core (r = 0) becomes
comparable with the repulsive minimum far from the core
(Fig. 1). Finite-size one-dimensional arrangements of particles
are observed under such strong influence of repulsion. Upon
further increase of x, the size of non-compact chain-like aggre-
gates becomes smaller and the overall randomness in the
configuration increases further.

A part of the 2D simulation box is presented in Fig. 3(a)
and (b) showing both limiting morphologies, compact and
non-compact, respectively. Red filled circles in these figures
represent instantaneous particle positions. Positions of the
same particles for 100 previous instants are plotted in the
background with blue dots. All the collated configurations are
separated from each other by 500 molecular dynamics steps.
The slow dynamics experienced by the particles is already
evident from these visual representations. Another important
observation is the consistency of the collective dynamics of
particles. Particles forming a cluster undergo collective transla-
tion and/or rotation; even bending to change conformations.
However, fragmentation and reformation of aggregates are

seldom observed. In other words, the system has reached its
steady state at least in terms of the size of clusters.

The radial distribution function g(r) for two limiting con-
formations, compact (x = 0.5) and non-compact (x = 0.8) is
presented in Fig. 3(c). Also known as pair correlation function,
g(r) quantifies the probability of finding a particle from another
arbitrary one as a function of the distance between them.

g(r) = (1/r)h
P

d(r � ri)i (4)

Splitting of the second peak of g(r) generally accounts for any
local ordering in the system. In Fig. 3(c), we immediately notice
the difference in the nature of splitting for the two different
cases. The split second peak of g(r) is asymmetric for x = 0.8 due
to near linear branched conformation of aggregates, whereas it
is symmetric and much pronounced for x = 0.5 as expected for
compact crystalline arrangement of particles. In the next section,
we unfold the microscopic dynamics across such morphologies
obtained from the analysis of the simulated trajectories of
constituent particles in terms of several measures of correlation.

3 Results
3.1 Local dynamics at fixed temperature

Non-Gaussian self displacement fluctuation. The statistics
of individual displacement fluctuations for different local geo-
metries for systems prepared at r = 0.4 at Tf = 0.05 is presented
in this section. The probability of finding a normally diffusing
particle is given by a Gaussian distribution with variance
related to its long-time diffusivity. However, this distribution
is often complemented by a fat exponential tail for systems
exhibiting structural or dynamical heterogeneity.59–61 We deter-
mine the probability of finding a particle at a distance r(t) from
its arbitrarily chosen previous position r(0) by computing the
self-part of van Hove function,62

Gsðr; tÞ ¼ 1=N
Xn
i¼1

d r� riðtÞ � rið0Þj jð Þh i (5)

Interestingly, a broad range of microscopic dynamics are
captured by Gs(r,t*), with t* = 50t for aggregates across their
morphological hierarchy. The choice of t*, albeit arbitrary, is
sufficiently large for the systems to settle in a steady state. For
compact clusters, Gs(r,t*) is dominantly Gaussian with small
exponential tail (Fig. 4(a)). On the contrary, for non-compact
aggregates, Gaussian part of Gs(r,t) is recessive and buried
within the long exponential part (Fig. 4(b)). These two distinct
parts immediately point to at least two different corresponding
diffusivities63 other than the average diffusivity and thus, the
heterogeneous dynamics in the system. Example trajectories of
a single particle chosen arbitrarily from the compact and non-
compact clusters are drawn in Fig. 4(c) and (d) respectively with
colours according to their time evolution. The spatial extent of
the trajectory is restricted but jagged for compact aggregates
compared to that of a non-compact one. From the visual
inspection of these trajectories it is evident that in both cases,
the particles undergo some sort of ‘reside and jump’ dynamics

Fig. 3 Visual representation of particle dynamics for the two x values are
shown for (a) compact (x = 0.5) and (b) non-compact (x = 0.8) structures,
respectively, at final temperature Tf = 0.05 and r = 0.4. Only a part of the
simulation box is shown for clarity. The scale used for both (a) and (b) is
same and shown in (b). Each red filled circle denotes an instantaneous
particle position. Blue background consists of dots representing the
positions of the same particles for 100 earlier instants stored in a regular
interval of 500 simulation steps. The size of the aggregates in both cases
are clearly stable over this observation period of 5 � 104 steps or 50t.
(c) Radial distribution function g(r) for these two values of x shows
prominent split second peak indicating the formation of local structures.
The difference in morphologies resulting from different values of x is also
evident from the difference between corresponding g(r).

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
7 

N
ov

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 O
IS

T
 G

ra
du

at
e 

U
ni

ve
rs

ity
 o

n 
18

/1
1/

20
16

 2
3:

03
:0

8.
 

View Article Online

http://dx.doi.org/10.1039/C6SM02239A


This journal is©The Royal Society of Chemistry 2016 Soft Matter

observed in other dynamically heterogeneous systems.64 How-
ever, the associated time scales are expected to be different. We
mention here that variations on non-Gaussian Gs(r,t*) have
been reported in published literature but for unrelated systems
such as granular materials close to jamming,65 diffusing colloids
on bio-filament network,66 turbulence67 and even for certain
socio-economic setups.68 By being able to capture this whole
range of variations, our model system might be useful to under-
stand the key ingredients of spatio-temporal heterogeneity arising
under diverse situations.

Different time scales for different morphologies. We continue
investigating average dynamics to study the overlap between two
arbitrarily chosen instantaneous configurations in order to
probe the degree of structural relaxation within the system.
Quantification of the overlap69,70 is computed as follows:

ZðtÞ ¼
XN
i; j¼1

w riðtÞ � rjð0Þ
�� ��� �

(6)

where i, j are particle indices and w(r) is a window function
which is unity if |r1 � r2| o a and zero otherwise. Allowing a
particle to relax within certain threshold distance a from its
original position, this quantity tells us whether a particle is
knocked out by its own copy or any other particle at later time.
We have chosen a = 0.03s as this is the average distance particles

traverse in unit time t. From the mean square displacement data
(shown in the next section), we can easily identify this length
scale. In Fig. 5(a), we show that configurations at Tf = 0.05
become uncorrelated in a scale-free manner from their arbitra-
rily chosen initial conformations after certain residence time tr.
This feature is in contrast with the usual glassy systems where
the relaxation of Z(t) is a stretched exponential71 instead of being
algebraic. The long-time algebraic tail of self-overlap can be
explained in terms of a survival function of the form (tr/t)

g where
g is the tail index72 and tr is the minimum residence time of a
particle. The typical tr is large for compact clusters (xo 0.6) and
drops down at least by amount t for non-compact conformations
(x 4 0.6). A clean step-like jump in tr, shown in Fig. 5(a)(inset),
provides clear evidence of a change in fundamental time scales
and thus the dynamics across the morphological hierarchy of
aggregates. Note that this power-law behaviour for structural
relaxation changes drastically to exponential decay when the
final temperature of the system goes above Tf = 0.2 and behaves
like an equilibrium liquid.

Symmetric caging vs. asymmetric binding. We identify different
physical mechanisms responsible for the limiting cases of such
heterogeneity using the evolution of relative displacement
fluctuations. This is captured by calculating the dynamic
Lindemann parameter,73

g(t) = h[Duj (t) � Duj+1(t)]2i/2s2 (7)

where Du(t) = r(t) � r(0) is the displacement of a particle
between its instantaneous position and its position at some
arbitrarily chosen origin of time evolution prior to that instant.
The indices j and j + 1 represent the neighboring particles
within the first peak of the pair-correlation function g(r).
Expanding this equation can formally be rewritten as,

Fig. 4 Non-Gaussian behaviour of self-displacement fluctuations Gs(r,t*)
(t* = 50t) is shown for (a) compact (x = 0.50) and (b) non-compact
(x = 0.80) aggregates. Both systems have same r = 0.4 and Tf = 0.05. While
dominant Gaussian self-fluctuations end with an exponential tail for
compact clusters, displacement of a particle from its arbitrary origin is
distributed exponentially over space for non-compact morphologies.
(c) and (d) are trajectories of a single particle belonging to (a) and
(b) respectively, colour coded by time. Using the same scale (scale bar =
0.5s), it becomes evident that the particle trajectory (c) in compact clusters
is more restricted and jagged than that in (d) non-compact clusters. The
particle dynamics clearly changes accompanying the structural transition.

Fig. 5 At Tf = 0.05, (a) the self-overlap function Z(t) (see text) follows a
power-law relation with time after an initial residence time tr. Across the
morphological transition (compact to non-compact), the local dynamics
shows a clear transition as tr jumps from high to low values (inset). This is
one central result of the present study. (b) Temporal evolution of dynamic
Lindemann parameter g(t) measuring the relative displacement fluctuation
of particles with respect to its neighbours captures another aspect of
this dynamical transition. Very slow initial increase in g(t) for compact
aggregates clearly points to the caging of particles by their near-neighbours.
On the other hand, initial steep increase followed by significant slowing
down of g(t) at long-time can be attributed to binding in non-compact
structures.
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2s2g(t) = h[uj (t) � uj+1(t)]2i + h[uj (0) � uj+1(0)]2i
� 2h[uj (t) � uj+1(t)]�[uj (0) � uj+1(0)]i (8)

Statistically, the last term should vanish if the motion of the
particles are uncorrelated (as t - N). This is indeed the case
for an equilibrium liquid and g(t) should then go linearly with
hDu2(t)i where h� � �i stands for the usual thermal averaging.
Our computation, evidently, deviates from that in a systematic
way. The particles in compact aggregates (x = 0.5, 0.6) show
negligible or very little displacement with respect to their
neighbors until time Bt (Fig. 5(b)). This observation combined
with the previous ‘reside and jump’-like dynamics hinted by
Gs(r,t) (Fig. 4) leads us to conclude the following. For compact
clusters, caging of a particle occurs by its nearest neighbors
arranged in a six-fold symmetry around it. Note that tr, presumably
the residence time within the cage, is large for compact aggregates.
After certain time, the particles leave the cage to move freely till they
occupy another cage and g(t) increases monotonically with time.
From visual inspection, we expect this to happen more frequently
for the particles at the edge of a cluster and less frequently for
those at the centre of compact crystalline aggregates. A reversal
of this feature is observed for non-compact aggregates. Large
repulsion responsible for these chain-like structures hinders the
particles from being close to each other and g(t) shows a sharp
initial increase. Consequently, tr is very small for such config-
urations as the particles, on an average, don’t reside much
longer at their original positions. However, once they are able
to decrease their relative distance due to thermal fluctuations,
side-wise binding of particles due to strong attraction leads to
asymmetric structures and g(t) shows considerable decrease in
the slope. In essence, as the aggregate morphology changes from

compact to non-compact, the dynamics of constituent particles
change from caging to asymmetric binding.

3.2 Global dynamics and temperature dependence

Intermediate relaxation and sub-diffusion. To analyse the
global dynamics of constituent particles arranged in different
local morphologies, we start with the mean square displacement
of particles over the observation time. Mean square displace-
ment (MSD) defined as,

r2ðtÞ
� �

¼ 1

N

XN
i¼1

riðtÞ � rið0Þf g2 (9)

measures the spatial extent of a particle’s displacement from its
origin after which the particle diffuses randomly due to thermal
fluctuations. In Fig. 6, we present the MSD data for different
values of x for the final temperature Tf = 0.05 at fixed r = 0.4. One
important observation is the presence of three distinct regimes
of global dynamics. In addition to the usual two regimes, short-
time ballistic and long-time diffusive, for equilibrium simple
liquids, our model aggregate forming system shows a distinct
intermediate time slow relaxation. Such behaviour is regarded as
the signature of dynamical heterogeneity which is in line with
our results for local dynamics presented in the previous section.
The intermediate relaxation appears to be most strong for
compact aggregates and gets softened with increasing x as the
clusters become more non-compact. The system enters the long-
time regime smoothly after this. The long-time dependence of
MSD is generically expressed as hr2(t)iB tn where free diffusion
is observed for n = 1. n o 1 indicates sub-diffusion74 which is
evident for all morphologies of aggregates and is also expected as

Fig. 6 (a) Mean square displacement (MSD) of particles is plotted against time for various values of x at fixed r = 0.4 and Tf = 0.05. MSD shows three
distinct regimes, short-time ballistic, intermediate slow relaxation and long time sub-diffusive behaviour (hr2(t)iB tn, n o 1). Intermediate slow relaxation
is more prominent for compact clusters (x = 0.50) than the non-compact ones (x = 0.80). Although the exponent n varies with x, the diffusion constant D
is insensitive to the structural variation. (Inset) Shows the dependence of diffusivity D on final temperatures Tf. Note that D, a measure of global dynamics
of the system, is insensitive to local structure and primarily governed by temperature. Temperature dependence of time-dependent diffusion coefficient
for (b) x = 0.50 (compact) and (c) x = 0.80 (non-compact). At the lowest final temperature, Tf = 0.05, the dynamics is heterogeneous but the time
dependence varies with the morphology. The diffusion constant becomes time independent as temperature goes above Tf = 0.20 for both cases as both
the systems become liquid and lose their structural signature.
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we know our systems are yet to reach equilibrium within
our observation time. The long-time diffusivity of the system,
D ¼ lim

t!1
ð1=2dtÞ r2ðtÞ

� �
is computed from the MSD data where d

is the system’s dimension. In Fig. 6 (inset), we show how
D changes as a function of Tf for two distinct morphologies,
compact (x = 0.5) and non-compact (x = 0.8). Surprisingly, D is very
similar for both of these morphologies though the exponent n
changes. These observations leads us to conclude that the global
dynamics primarily maintained by the systems’ temperature is an
insufficient measure of spatio-temporal heterogeneity of aggregates.

Heterogeneous diffusion. Following our previous discussion
on the average diffusivity D, here, we turn our attention to its
temporal evolution. The time-dependent diffusion constant is
defined as75–77

DðtÞ ¼
r2ðtÞ
� �
4t

(10)

According to Fick’s law, this quantity D(t) should reach a steady
state yielding a characteristic diffusion constant for a system in
equilibrium. We note that spatial homogeneity is a primary
assumption in such cases. As a corollary, we might expect D(t) to
be an indicator of heterogeneity and also its nature. In Fig. 6(a) and
(b), we present D(t) for two representative values x = 0.5 & 0.8,
respectively, for a range of Tf. D(t) is normalized by the short-time
diffusivity D0 ¼ lim

t!0
DðtÞ which represents particle motion in short-

time ballistic motion when the particles have yet to experience the
presence of their neighbours. In line with our observations of
dynamical heterogeneity (previous section), D(t) shows a monotonic
decay at long time, t 4 t for Tf = 0.05, the lowest temperature
achieved in this study. Further, the decay process is clearly surro-
gate to the local morphology as D(t) for compact structures (x = 0.5)
is distinctly different from that of non-compact clusters (x = 0.8) at
Tf = 0.05. As Tf increases beyond 0.2, the local structural ordering is
destroyed and the system for all values of x behaves like equili-
brium liquid as D(t) becomes constant at long time. These results
point to a fundamental relation between local finite-size morphol-
ogy and global dynamics.

Diffusivity and structural randomness. Considering that
diffusion in equilibrium simple liquids is governed by the
Enskog process,78 it is possible to relate the diffusivity of the
system to the configurational phase space volume available to
the same, quantified by the excess entropy of the system. The
following phenomenological relation between diffusivity and
excess entropy was proposed and established for simple equili-
brium model systems.79,80

D = Cs2GeS2 (11)

where C is a system dependent dimensionless non-zero con-
stant and G is the typical collision frequency. The two-body
excess entropy,81 S2, is an ensemble independent measure of
structural randomness of the system.82 It is computed from the
static radial distribution function g(r) of particles within a given
system:

S2 ¼ �r=2
ð
dr gðrÞ ln gðrÞ � ½gðrÞ � 1�f g: (12)

Later, it was experimentally verified for colloidal systems83 and
a wide range of liquid metals.84 In a previous study,58 we
categorized the morphological hierarchy of our model aggre-
gates in terms of S2. In short, non-compact clusters possess
higher degree of randomness (S2 B 0) closer to liquids. S2

assumes large negative values as soon as local crystalline
ordering appears within the system as in compact aggregates.
Since for all these morphologies, the microscopic dynamics at
low temperature is non-equilibrium and much slower than
simple liquids, an Enskog process cannot be expected. Further,
the collision frequency G is neither well defined nor readily
accessible for the low temperature aggregates where the overall
particle motion is very slow and collective. We define a dimen-
sionless diffusivity D* = D/D0 and plot it against S2 in Fig. 7 for
different Tf. For Tf Z 0.2, the fixed density system for all values
of x studied shows the same D* and S2 as all of them behave
like an equilibrium liquid. As the temperature goes lower, the
system develops different structural randomness depending on
its x value. A spread in both D* and S2 are now observed.
Overall, an exponential relation, D* B eS2 (similar to eqn (11)) is
observed for systems with small values of S2(r1) i.e. high-
temperature equilibrium liquids and low-temperature, non-
equilibrium non-compact aggregates. This observation is
surprising and suggests that the Enskog process might not be
limited to thermodynamic equilibrium, but instead is related to
the morphological randomness. As the system adapts specific
crystalline symmetry this feature breaks down and D* becomes

Fig. 7 The average dynamics of the system measured by reduced diffu-
sivity D* can be related to configurational randomness of the system
measured by two-body excess entropy S2. A universal D*–S2 relation (see
text) is observed to hold for small values of S2 or high randomness which
correspond to high-temperature equilibrium liquid and low-temperature
non-ergodic non-compact aggregates. The compact aggregates at low
temperatures having local crystalline order naturally deviate from this
universality.
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nearly independent of S2 for the compact aggregates as expected
in equilibrium crystalline systems. With the possibility of a
fundamental description of microscopic dynamics in terms of
the degree of configurational randomness, this observation
certainly begs further study.

4 Discussion

Inherent frustration of the competing short-range attraction
and long-range repulsion results in restricted and random
spatial extent of particle arrangements at low enough tempera-
ture and density. At the same time, the microscopic dynamics
become heterogeneous as the mobility of particles becomes
extremely sluggish due to the nominal thermal fluctuations.
Importantly, both structural randomness of aggregates and
heterogeneous micro-dynamics of constituent particles can be
changed seamlessly by tuning the interactions under fixed
thermodynamic conditions. Following the individual particle
trajectories in different aggregate morphologies and the evolu-
tion of their fluctuations, we have identified the nature of these
heterogeneous dynamics and its transition in sync with the
morphological transition. However, we note that such differ-
ences are quiet subtle and are only revealed through compre-
hensive analysis. An average dynamical quantity such as the
diffusion coefficient D of our model system is found to be
insensitive to the observed structural hierarchy.

Under strong influence of short-range attraction, the move-
ment of a particle is restricted within a cage bounded by its
neighbors and particles align themselves in local hexagonal
arrangement, energetically favored in 2D. Consequently, the
self-displacement fluctuation Gs(r,t) of particles forming a
compact cluster is predominantly Gaussian within a length
comparable to the typical cage size and decays exponentially
outside this typical size due to the overall rearrangements
happening within the system at that instant. With increasing
repulsion, the degree of geometric frustration due to competi-
tion between interactions increases and the hexagonal symme-
try becomes unfavorable. An emergent anisotropy originating
from the complex interplay between enhanced frustration and
thermal fluctuations allows only sidewise binding of particles.
As a result, particles assume finite-size string-like non-compact
structures and the Gaussian part of their Gs(r,t) is almost
hidden under the exponential part. These two distinct dynami-
cal processes, caging and binding for compact and non-
compact aggregates respectively, have further been supported
by the detailed analysis of relative displacement fluctuation g(t)
of particles relative to their nearest neighbors.

Following this physical picture, it is only natural to expect
that the particles within a crystalline compact arrangement stay
longer at and/or in close proximity to their original position
compared to those in non-compact conformations. Investiga-
tion of the self-overlap function, Z(t), provides a useful descrip-
tion of such heterogeneous dynamics. Most importantly, this
investigation identifies one fundamental measure of dynamics,
namely, the residence time tr which clearly shows a transition

in microscopic dynamics across different morphologies. Further
correspondence between dynamics and morphology of aggregates
has been established by relating scaled diffusivity and two-body
excess entropy. Whereas these results might improve our current
understanding85 of the interrelation between structure and
dynamics in condensed phases, the following questions are also
invoked. Why and how exactly does the competing interaction
affect the equilibration process of particulate systems? What is the
distribution of diffusivity and how is it related to the vibrational
modes of the system? Together with these questions, in future, we
plan to investigate the effect of cooling rate, aging time and external
mechanical fields on these pattern forming systems to understand
the role of local geometry with unusual dynamical responses.
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