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A two-dimensional system of photoelastic disks subject to vertical tapping against gravity was
experimentally monitored from ordered to disordered configurations by varying bidispersity. The packing
fraction ϕ, coordination number Z, and an appropriately defined force-chain orientational order parameter
S all exhibit as similar sharp transition with a small increase in disorder. A measurable change in S, but not
ϕ and Z, was detected under tapping. We find disorder-induced metastability does not show configurational
relaxation, but can be detected via force-chain reorientations.
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Order-disorder transitions represent one of the most
important concepts in statistical physics [1]. For example,
magnetic and liquid-gas phase transitions are well under-
stood through the concept of order-disorder transition. This
concept finds applicability beyond these classical thermo-
dynamic phase transitions in various soft matter problems
including granular matter, liquid crystals, etc. For instance,
the crystalline (ordered) structure resulting from densely
packed monodisperse grains gives way to a disordered
structure when polydisperse grains are introduced in
granular media, a type of athermal order-disorder transi-
tion. In such granular packs, configurational structure is
supported by a set of grain-contact networks called force
chains. Whereas force-chain structure is related to the grain
configuration, it also possesses an orientational degree of
freedom, a situation similar to liquid crystal nematic phases
where molecular positions are random but their orientations
exhibit an ordered state [2]; configurational structure and
orientational order can be independent. Therefore, a quan-
tification of the orientational order as well as structural
order becomes necessary for the proper characterization of
the order-disorder transition in granular matter. In this
study, we experimentally measure structural and orienta-
tional parameters in granular order-disorder transition by
using photoelastic materials [3]. As a consequence, we find
that the force-chain orientational order parameter is much
more sensitive than structural parameters, and can charac-
terize the granular pack’s relaxation under external
perturbation owing to metastability arising purely from
structural disorder, as opposed to mechanical sources such
as friction.
The experimental setup [Figs. 1(a) and 1(b)] consisted of

a bidispersed set of photoelastic disks placed within an
acrylic chamber of dimensions 0.3 × 0.3 × 0.011 m3, held
vertically on an electromagnetic shaker (EMIC 513-B/A)
driven by a function generator via an amplifier (EMIC
374A/G). Disks were cut from a 0.01 m thick photoelastic

sheet (Vishay Micromeasurements, PSM-4) with diameter
DL ¼ 0.015 m (large) and DS ¼ 0.01 m (small). The
granular pack’s configurational disorder was controlled
by varying bidispersity through the ratio of small to large
disks and quantified using RS (RL), the ratio of area
occupied by small (large) disks to total area of the disks
(RS þ RL ¼ 1). We varied the bidispersity ratio RS (alter-
natively RL) for 17 values as shown in Table I. Two types of
ordered structures (square and triangular lattices) were
produced for ordered states (RS ¼ 1 or RL ¼ 1). For
disordered states, large and small disks were dispersed
homogeneously to the extent possible, in their initial states.
Then, both the disk configurations and force-chain struc-
tures were optically captured by two modes: standard
bright-field imaging to obtain the pack’s configurational
information and circular polariscope dark-field imaging to
analyze force chain network [4] (for details, see Ref. [5]).
To investigate the stability of this initial packing state, we

added tapping to the system by using a shaker. An
accelerometer (EMIC 710-C) mounted on the chamber
measured acceleration magnitude under tapping. Each
initial configuration (tapping number τ ¼ 0) was tapped
10 times; i.e., final state τ ¼ 10. All experiments described
here were performed at a dimensionless acceleration
Γ ¼ a=jgj≃ 10, where a is the maximum tapping accel-
eration and jgj ¼ 9.8 m=s2. The corresponding amplitude
A normalized to the small disk diameter is A=Ds ≃ 0.025.
Images were acquired after every tapping in addition to the
initial state. Three experimental runs were performed in
each experimental condition.
Quantities of interest extracted from image analysis

include the packing fraction ϕ [5], coordination number
Z [6], and force-chain orientational order parameter [2],
which characterizes the alignment of force chains to the
gravitational director (ĝ≡ g=jgj). Each force chain running
from one boundary to the other consists of smaller seg-
ments [5], where the ith segment has length li and angle θi
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relative to ĝ. This permits definition of an orientational
order parameter:

S ¼
�
2

L

X
i

li cos2 θi

�
− 1; ð1Þ

where L ¼ P
ili is the total length of all force chains. In

limiting cases, Eq. (1) yields S ¼ þ1 for θ ¼ 0° (force
chains parallel to ĝ) and S ¼ −1 for θ ¼ 90° (force chains
perpendicular to ĝ). Randomly oriented force chains
(isotropic orientation) or θ ¼ 45° yield S ¼ 0. Visual
inspection trivially distinguishes between perfect θ ¼ 45°
and isotropic alignment for S ¼ 0.
Figure 1 shows representative bright-field and dark-field

images of crystalline (RL ¼ 1) square [Figs. 1(c) and
1(d)] and triangular [Figs. 1(e) and 1(f)] lattices and a
disordered configuration obtained at RS ¼ RL ¼ 0.5
[Figs. 1(g) and 1(h)], respectively. Despite the bright-field
images exhibiting perfect crystalline square [Fig. 1(c)] and
triangular [Fig. 1(e)] lattice configurations, their corre-
sponding dark-field images [Figs. 1(d) and 1(f)] clearly
show force-chain defects due to minor disk imperfections.
This force chain sensitivity is not well appreciated on

account of their usual applicability to disordered granular
packs [Figs. 1(g) and 1(h)], which yield highly hetero-
geneous structures. This simple empirical observation
suggests that the force-chain structures may be an
extremely sensitive probe of structural information.
In the first set of experiments, we monitored the change

in the structural parameters ϕ, Z, and S by varying RS. In
Fig. 2, we plot ϕ [Fig. 2(a)], Z [Fig. 2(b)], and S [Fig. 2(c)]
versus RS (RL) for the initial (τ ¼ 0, open symbols) and the
final (τ ¼ 10, solid symbols) configurations. All three
quantities exhibit a very similar, sharp structural transition
over a short range in RS (RL) from a completely ordered
to an asymptotic disordered state. A small amount of
bidispersity with RS ¼ 0.1 (or RL ¼ 0.1) is sufficient to
achieve the asymptotic disordered sate [flat bottoms in
Figs. 2(a)–2(c)]. To characterize the degree of bidispersity,
the dimensionless parameter A ¼ hDi2=hD2i was intro-
duced in Ref. [7], where D is grain size and h·i means
average of the entire system. By this definition, RS ¼ 0.1
corresponds to A ¼ 0.98, a value consistent with numeri-
cally obtained criterion (A < 0.99) to avoid crystallization
[7]. The result obtained here provides a practically useful
criterion to avoid crystallization in experiments and sim-
ulations using bidispersed systems.

FIG. 1. (a) Front and (b) side view schematics of the experimental setup. The disks were placed in a vertical chamber mounted on an
electromagnetic shaker. An accelerometer was attached to top right corner of the chamber. A light source with a circular polarizer
provided backlit illumination for the system. A second circular polarizer oriented in cross-polarization mode placed in front of the
chamber was used for dark-field imaging of photoelastic fringes. Representative images of disk configurations show square lattice
(c) bright-field and (d) dark-field images, triangular lattice (e) bright-field and (f) dark-field images, and random configuration with
bidispersity ratio RL ¼ RS ¼ 0.5 (g) bright-field and (h) dark-field images, respectively.

TABLE I. Area ratio RS (RL) at which experiments were conducted. Three experimental runs were performed at each value. At RS ¼ 0
and 1 (RL ¼ 1 and 0), three sets each were collected for both triangular and square lattice configurations.

Area ratio (RL) 1 0.99 0.97 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.03 0.01 0
Area ratio (RS) 0 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.99 1
Number of large disks 400 396 388 380 360 320 280 240 200 160 120 80 40 20 12 4 0
Number of small disks 0 9 27 45 90 180 270 360 450 540 630 720 810 855 873 891 900
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The asymptotic values for ϕ and Z at disordered states
are also in accord with expected values. Although the
disordered granular packs with zero friction approach the
random close packing limit (ϕ → 0.84 and Z → 4 in 2D),
friction leads to reduction in both ϕ and Z. Owing to disks
in our experiment having nonzero friction (friction coef-
ficient μ≃ 0.19 [8]), the expected values for the jammed
configurations in our experiments based on numerical
results (see Table 1 in Ref. [9]) are ϕ≃ 0.827 and
Z≃ 3.59 [horizontal dashed lines in Figs. 2(a) and 2(b),
respectively], very close to our experimentally observed
values.
For the orientational order parameter S, we expect that

the crystalline square lattice configuration exhibits vertical
force chains aligned along ĝ; i.e., S ¼ 1. Whereas the ideal
triangular lattice configuration (θ ¼ 30°) results in S ¼ 0.5,
the gravitational force will distort this orientational order to
the gravitational direction ĝ. As a result, S becomes greater

than 0.5 in actual triangular lattice configurations. In any
case, values of S for ordered states close to RS ¼ 0 and 1
sharply approach S → 1. However, the values of S in
disordered states (0.1 ≤ RS ≤ 0.9) are roughly constant,
similar to ϕ and Z behavior.
Fitting functions for these three plots [Figs. 2(a)–2(c)]

follow the same empirical form:

X ¼ kXffiffiffiffiffiffiffiffiffiffiffi
RSRL

p þ pX; ð2Þ

where kX and pX (see Fig. 2 legend for fit values) are the
respective fitting parameters for X ¼ ϕ, Z, or S. Since
RS þ RL ¼ 1, Eq. (2) follows the functional form
X ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSð1 − RSÞ

p
, thus explaining the singular

square-root behavior as one approaches RS and RL values
close to ordered configurations. Note, however, that none
of the quantities diverge at the ordered state. Thus, Eq. (2)
is an empirical approximation. In addition, very low ϕ
values (less than 0.8) at RS ¼ 0 and 1 coming from the
square lattice are neglected here in the fitting. Starting with
an ordered granular configuration RS ¼ 0 or 1, the replace-
ment of small disks with large ones (while keeping total
disk area constant) creates disordered clusters in the pack, a
situation not dissimilar to structural transitions witnessed in
well-studied thermodynamic order-disorder transitions. For
instance, crystalline melting characterized by vacancy
creation [10,11] causes nonsymmetric five- and or seven-
fold sites, whose increase and eventual formation of a
spanning, disordered cluster results in a structurally dis-
ordered liquid [12]. Current experiments cannot directly
map to thermodynamic order-disorder transitions, nor is
conclusive determination of square-root behavior in this
structural order-disorder transition possible from current
data. The observed fit with square-root form merits further
careful investigation given its significance for optimal
bidispersity that ensures disorder in granular packs [7].
Next, we discuss the stability of these parameters under

external perturbation (tapping). As can be seen in Figs. 2(a)
and 2(b), the values of ϕ and Z exhibit no measurable
relaxation by tapping; i.e., the initial (τ ¼ 0) and final
(τ ¼ 10) configuration fall atop each other, variability
being within measurement error. This is in contrast with
prior results that demonstrate relaxation in structural
parameters (particularly ϕ) under tapping [5,8].
However, S exhibits measurable relaxation as shown in
Fig. 2(c) while it follows the same functional form as ϕ and
Z. This is tantamount to force-chain orientational order
reflecting the pack’s metastability at τ ¼ 0, which was not
detectable in ϕ and Z. The metastable relaxation can be
detected only by orientational order while configurational
disorder remains almost constant. This situation is analo-
gous to the liquid crystal nematic phase where the sample is
configurationally disordered (liquid), but their orientational
order varies independently.

τ = 0
τ = 10

φ φ

τ = 0
τ = 10

τ = 0
τ = 10

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Left column: The initial (τ ¼ 0, open symbols) and final
(τ ¼ 10, solid symbols) configurational values for (a) packing
fraction ϕ (circles), (b) coordination number Z (squares), and
(c) force-chain orientational order parameter S (triangles) versus
bidispersity metric RS (RL). Curves are fits to initial (solid) and
final (dotted, plotted only for Swith measurable change in values)
configurational data following the functional form in Eq. (2). Fit
parameter values kX and pX are provided in respective legends.
Right column: Evolution of (d) ϕ, (e) Z, and (f) S as a function of
tapping number τ for crystalline square (green solid squares) and
triangular (red solid triangles) as well as bidisperse disorder
configurations (solid blue circles) for RS ¼ RL ¼ 0.5. Error bars
represent variability observed over three experimental runs.
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To better understand this metastability and the resulting
relaxation under tapping, we plot the evolution of ϕ, Z, and
S as a function of the tapping number τ for crystalline
(square and triangular lattice) as well as disordered con-
figurations at RS ¼ RL ¼ 0.5 [Figs. 2(d)–2(f)]. Neither ϕ
[Fig. 2(d)] nor Z [Fig. 2(e)] exhibit any dependence on
tapping number τ. In Fig. 2(f), the square and triangular
lattice configurations exhibit no measurable variation with
τ. However, a monotonic decrease was measured in S for
disordered configurations (RS ¼ RL ¼ 0.5). With many
more tappings, relaxation might proceed slowly (see,
e.g., Ref. [13]). In this study, however, the focus is on
parameter sensitivity, in particular, rather than the slow
relaxation. The important fact in the current analysis is that
the variation of S is much more significant than ϕ and Z.
The slow relaxation of structure and orientation is under
investigation and will be reported in the near future [14].
Contact friction is present between disks for all con-

figurations. Metastability arising from friction [8,15] and
its resulting protocol dependence [8,16] have been dem-
onstrated in frictional granular packs. Structural relaxation
of initial metastable configurations under tapping is there-
fore to be expected. If friction were the principal source of
configurational metastability, it ought to be present and
detectable both for crystalline and disordered configura-
tions. However, relaxation in S with tapping is absent for
crystalline configurations, but present in disordered con-
figurations, implying S is acutely sensitive to disorder-
induced metastable relaxation, as opposed to ϕ and Z, as
normally employed in theory [17], numerics [18], and
experiments [19]. Metastability in the presence of disorder
has a rich history in condensed matter systems [20–23].
However, to the best of our knowledge, disorder-induced
metastability has not been discussed before in granular
media. It is difficult to observe the force-chain network in
general (thermal and three-dimensional) metastable relax-
ation phenomena. Rather, the analysis method mentioned
in this Letter provides a simple way to study the universal
physical mechanisms in metastable relaxation by using a
two-dimensional granular system. In addition, the granular
relaxation dynamics offers a fundamental aspect for various
natural phenomena, such as the development of planetary
terrain covered by regolith grains [24].
The tapping-induced decrease of S implies that the force-

chain structure is statistically reorganized from the vertical
to the horizontal direction. Whereas one may argue this
effect arises from the container’s sidewall friction, it is
unlikely. The values of ϕ and Z measured in our experi-
ments [see Figs. 2(a) and 2(b)] are in accord with numerical
results of [9], where such systematics are absent. Therefore,
ϕðτ ¼ 0Þ and Zðτ ¼ 0Þ have already asymptoted to the
random loose packed limit. If sidewall friction were
dominant, we would expect to see ϕ and Z values below
the presently observed values. However, finite size effects
are certainly manifest and the finite size scaling of the

observed behavior is an important problem to be addressed
in the future.
Whereas ϕ and Z are structural parameters, S is a

topological orientational parameter. Thus, there is no
reason to expect a close functional correspondence between
these quantities. In fact, structural and orientational orders
can be independent in nematic liquid crystals [2]. However,
owing to all three parameters exhibiting a very similar sharp
transition in Fig. 2, we investigated a possible relationship.
In Fig. 3, we plot Z and S versus ϕ. The identical linear
relationship between Z and ϕ is observable for both the
initial and final configuration. This tendency is consistent
with previous studies [13,25]. However, S and ϕ did not
show a systematic relation. This means that while Z and ϕ
are similar quantities, S is an independent particular
quantity to characterize the force-chain structure.
In summary, we experimentally studied the order-

disorder transition in granular matter by varying bidisper-
sity. We found that a small amount of bidispersity
(RS ≥ 0.1 orA ≤ 0.98) is sufficient to avoid crystallization.
In the disordered state, measured parameters (ϕ, Z, and S)
show almost constant values. Although the structural
parameters (ϕ and Z) are stable under tapping, the force-
chain orientational order parameter S varies under tapping
in disordered states. This implies that S is much more
sensitive than traditionally used structural parameters (ϕ
and Z) to detect the granular metastable relaxation that
arises from structural disorder alone.
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