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We experimentally study a two-dimensional (2D) granular pack of photoelastic disks subject to vertical manual
tapping. Using bright- and dark-field images, we employ gradient-based image analysis methods to analyze various
structural quantities. These include the packing fraction (ϕ), force per disk (Fd), and force chain segment length (l) as
functions of the tapping number (τ). The increase in the packing fraction with the tapping number is found to
exponentially approach an asymptotic value. An exponential distribution is observed for the cumulative numbers of both
the force per disk Fd : NcumðFdÞ ¼ AF expð�Fd=F0Þ, and the force chain segment length l : NcumðlÞ ¼ Al expð�l=l0Þ.
Whereas the coefficient AF varies with τ for Fd, l shows no dependence on τ. The τ dependences of Fd and ϕ allow us to
posit a linear relationship between the total force of the granular pack F�

totð�Þ and ϕ(τ).

1. Introduction

Granular packing is ubiquitous in everyday life. It is
common knowledge that a denser granular pack can be
achieved by tapping the pack. A clogged granular flow can be
unjammed and structural foundations of buildings strength-
ened by tapping. Indeed, the first thing one does when
in trouble with handling granular materials is to tap the
container. Nevertheless, the physical mechanisms concerning
the effect of tapping on granular packs are not yet completely
understood. Recent investigations on granular compaction
have used the dimensionless maximum acceleration � ¼
�max=g to characterize the strength of tapping and=or
vibration applied to a granular pack, where �max is the
maximum acceleration and g ¼ 9:8m=s2 is the gravitational
acceleration.1–11) Most previous studies have used steady
vibration to cause granular compaction. The final state
attained by steady vibration is solely determined by
Γ.2,3,6,10,11) The most efficient compaction is induced at a Γ
of ’2.2,3,7) When Γ is too small, the compaction takes a long
time and grows logarithmically over time. When Γ is too
large, on the other hand, it is difficult to attain the highly
compacted state as a large amount of kinetic energy is
delivered to the granular pack in such a strong vibration.7)

However, granular compaction also depends on the vibration
history.4,5) Although steady vibration has a well-defined
maximum acceleration, it represents one particular instance
of granular compaction. In general, natural vibration or
tapping applied to a granular pack is somewhat irregular.
Hence, granular compaction induced by irregular perturba-
tions such as manual tapping must be examined to understand
the compaction processes that occur in nature.

To diagnose the physical mechanism of granular compac-
tion, access to the inner stress structure created by a granular
pack is necessary. In general, granular packs exhibit an
inhomogeneous stress distribution, which can be character-
ized by a network of force chains. This force chain structure
is peculiar to granular assemblies and causes their complex
rheological behaviors. The force chain structure can be
visualized in a two-dimensional (2D) case. Using a 2D pack
of photoelastic disks, the force chains can be observed via
the retardation due to the stress-induced birefringence of a
photoelastic material.12–18) Using photoelastic disks, the force
applied to each disk can be measured.12,13) More recently,

the applied force has been decomposed into normal and
tangential components by a computational image-matching
method.14,16) Relationships among the shearing, isotropic
compression, and jamming have been extensively studied
using photoelastic disks.14–18) To the best of our knowledge,
however, the tapping-induced granular compaction has not
been studied with photoelastic disks. Therefore, we carry out
an experiment with photoelastic disks toward clarifying the
physics of granular compaction via manual tapping.

In this paper, we report the details of an experimental
methodology developed to study granular compaction. A 2D
granular pack consisting of photoelastic disks is constructed.
Then, manual taps are applied to the granular pack. The
evolution of the packing fraction and the force chain structure
in the granular pack are characterized by the image analysis
of photoelastic disks. On the basis of analysis, the relation-
ship between the packing fraction and the force chain
structure is discussed to reveal what happens in the
compacted granular pack.

2. Experiment

2.1 Setup
The experimental setup, as shown in Fig. 1, consists of

a 2D experimental chamber constructed with acrylic plates
along the front and back and held together by aluminium bars
along the sides and bottom. The chamber dimensions are
0:3 � 0:5 � 0:011m3 in height, width, and thickness, re-
spectively. An accelerometer (EMIC 710-C) is mounted on
the top-right corner of the chamber to measure the maximum
acceleration (�max) experienced during the experiment. The
chamber is filled with a bidisperse (to avoid crystallization)
set of 350 large (diameter is 0.015m) and 700 small
(diameter is 0.01m) photoelastic disks of 0.01m thickness
(Vishay Micro Measurements PSM-4). The chamber is
vertically placed between a circularly polarized LED light
source and a CCD camera (Nikon D70), which acquires two
types of image 2000 � 3008 pixels in size, corresponding
to a spatial resolution of 1:76 � 10�4m=pixel (MPP). The
camera is placed 1m in front of the experimental chamber.
First, a bright-field image [Fig. 2(a)] of the granular pack is
acquired to measure the packing fraction and the disk centers
and diameters for estimation of the force per disk. A second
dark-field image [Fig. 2(b)] is acquired by placing a second
circular polarizer between the experimental chamber and the
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camera in cross-polarization mode. This image provides the
photoelastic intensities of the granular force chains. Images
are acquired under dark-room conditions to minimize
ambient noise from extraneous illumination.

2.2 Experimental protocol
Prior to start of the experiment, an initial configuration of

low packing fraction is generated. It is preferable that the
initial packing fraction be small since this study focuses on

granular compaction via manual tapping. However, when
disks are introduced in a vertically standing chamber, initial
compaction occurs from disk impacts. Therefore, the disks
were introduced by spreading them in the chamber while it is
horizontally laid down, and then the chamber was vertically
fixed, thus assuring a small initial packing fraction. A pair of
bright- and dark-field images is then acquired for this initial
configuration.

The system is then perturbed by providing a manual
tapping to the experimental chamber. In particular, each
manual tapping is defined as adding two impulses to each
bottom edge of the experimental chamber. Whereas this
tapping protocol is not systematically controlled as in the
case of an electromagnetic shaker, for instance, it was
specifically chosen to mimic the situation of stochastic
impulse forcing observed in many natural processes. In
any event, the accelerometer attached to the experimental
chamber measures the acceleration experienced during
tappings, from which dimensionless acceleration is defined
as � � �max=g. The experiments reported here are in the
regime of � ’ 3{4. This tapping acceleration is large enough
to achieve the efficient compaction. Following each manual
tap, a pair of bright- and dark-field images is acquired for
subsequent analysis to determine the evolution in the packing
fraction (ϕ), force per disk (Fd), and the force chain segment
length (l) as functions of the tapping number (τ). Each
experimental run consists of the initial configuration followed
by nine manual taps (� ¼ 9), thus providing ten pairs of
bright- and dark-field images per run. Nine experimental runs
under identical experimental conditions were conducted.

2.3 Image analysis
Here, we explain the image analysis methods employed to

extract the packing fraction ϕ, the force per disk Fd, and the
force chain segment length l from the bright- and dark-field
images. The image analysis software ImageJ19) was used to
analyze the experimental image data.

2.3.1 Determination of packing fraction
In this study, we define the packing fraction as � ¼

St=ðSm þ SvÞ, where St is the theoretical total area of the
photoelastic disks, Sm is the total area of photoelastic disks
measured from the bright-field images, and Sv is the total
void area measured from the bright-field images. Whereas
theoretically, St ¼ Sm, in reality, Sm=St ’ 1:1 owing to the
optical distortion of the image between the center and edges
of the bright-field image [see Fig. 2(a)] and the thickness gap
between the disks and the chamber wall. When granular
compaction occurs under manual tapping, whereas Sm
remains almost constant, Sv decreases owing to the reduction
in the area of the voids between disks. Therefore, a
measurable increase in the packing fraction is observed with
increasing tapping number τ. Often, the packing fraction is
calculated as the ratio of the area occupied by the photoelastic
disks to the total chamber area. This definition is reasonable
when the granular pack is enclosed on all sides. However,
since this experiment is conducted with the upper side of the
experimental chamber left open, an accurate estimation of the
total chamber area is not possible. The same situation also
arises in the estimation of the packing fraction for granular
heaps or sand piles.20)

Fig. 1. Top view of the optical setup of the experiment. The experiment is
carried out in a dark-room to prevent stray light. The distance between the
light source and the camera is about 1m to ensure uniform angles of incident
light into the camera. The 2D experimental chamber is placed vertically in
front of the light source, which is attached to a circular polarizer. A snapshot
of the chamber is taken with a CCD camera (Nikon D70). The circular
polarizer in front of the camera is set at 90° (cross-polarization mode) relative
to the other. Two types of images are obtained with and without the circular
polarizer in front of the camera.

(a)

(b)

Fig. 2. (Color online) (a) Example of a bright-field image by which
the packing fraction and the position of photoelastic disks are obtained.
(b) Corresponding dark-field image by which the structure of the force chains
is analyzed.
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For the calculation of the packing fraction ϕ, the
theoretical area of the disks St was first calculated from the
known numbers of large and small disks, whose diameters
were already available, yielding St ¼ 1:17 � 10�1m2 for the
experiments reported here. For the calculations of Sm and Sv,
the bright-field image was first binarized using ImageJ, which
resulted in dark disks on a bright background. The pixel area
of the dark regions multiplied by the spatial resolution (MPP)
then provided Sm, and the inversion of images was used to
obtain Sv.

2.3.2 Characterization of photoelastic intensity gradient
Extant studies have used photoelastic signals to measure

contact forces in one of two ways. The first method estimates
the force per disk using the photoelastic intensity gra-
dient.12,17) The second method estimates the force per disk
via computational image matching.14,16) In this study, we
apply the former method for measurement of the force per
disk as the image resolution obtained is insufficient to
measure forces by the latter computational matching scheme.
The algorithm applied here for force measurement is similar
to that adapted by Howell et al.12)

For the given intensity I for each image pixel (8 bit, gray
scale), a Sobel filter was applied to obtain the squared
horizontal ðrIhÞ2 and vertical ðrIvÞ2 gradients of the
intensity. Their sum jrIj2 ¼ ðrIhÞ2 þ ðrIvÞ2 provides the
squared gradient of the intensity per pixel. The mean-squared
intensity gradient over all pixels within a disk was then
defined as hG2i � hjrIj2i. The computation of hG2i on each
disk requires knowledge of each disk center and its area;
information available from the bright-field image (Fig. 3) is
obtained in three steps: (1) binarizing a bright-field image, (2)
splitting disk areas of contiguous binarized intensity into
individual disks, and (3) measuring each disk center position
and area. Step 1 is identical to the packing fraction
measurement method. In step 2, a watershed algorithm was
employed to discriminate between sharp gradients of the
intensity among disks, usually referred to as mountains (low-
intensity gradient) and rivers (high-intensity gradient), to
distinguish individual disks. This is necessary to identify the
disk perimeters along which the photoelastic intensities of
contact forces exist. Following this watershed procedure,
each disk center position and area were measured in step 3.
By applying these results to the dark-field image, the mean
squared intensity gradient of the photoelastic signal hG2i was
then obtained for each disk.

2.3.3 Force calibration
The force per disk was calibrated using a vertical one-

dimensional (1D) chain and the measurement method
explained in Sect. 2.3.2 to obtain force calibration curves
which convert hG2i to force. A vertical 1D chain of
photoelastic disks of 0.3m height as shown in Figs. 4(a)
and 4(b) was constructed. The 1D chain consisted of either
20 large disks or 30 small disks. A pair of bright- and dark-
field images was then obtained, and the image analysis
methods (Sect. 2.3.2) were applied to calculate hG2i for each
photoelastic disk. FcðnÞ in Newtons (where n is the position
of the disk from the top of the 1D chain), i.e., the applied
force per disk in the vertical 1D chain, was estimated from
the relationship Fc ¼ nmg, where m is the mass per disk

(1:8 � 10�3 kg for a large disk and 0:8 � 10�3 kg for a small
disk). In Fig. 4(b), fringes on the boundary between disks
and sidewalls cannot be observed in the dark-field image.
Therefore, the effect of sidewalls was neglected in calibration
measurements. Figure 4(c) shows the calibration data
obtained for both disk sizes. The quadratic fits of the
calibration data were then used as the final calibration curves
for measurements of the force per disk in the experimental
data. Since the adopted procedure does not involve the
computational image matching of photoelastic fringes, only
the total force applied to a disk can be measured in this study,
which cannot be decomposed into the normal and tangential
components.

2.3.4 Force chain segment length measurement
The segment length l of force chains forms one of the

structural variables measured in this experimental study. We
employed a standard image analysis technique known as the
thinning method, an example of which is shown in Fig. 5. A
dark-field image [Fig. 5(a)] was binarized [Fig. 5(b)] and a
skeletonize procedure (also known as the erosion method or
the bleeding algorithm) in ImageJ was used to thin the
segment down to a line of single-pixel thickness. The force
chain segment length was then defined as the linear distance
between intersections or end points of the chain in the
thinned force chain image [Fig. 5(c)].

(a)

(b)

Fig. 3. (Color online) Disk identification and measurement of force per
disk from image analysis. The area and center of each disk are obtained from
the bright-field image (a). A sample disk center and circumference are shown
in red for a large disk. This information is then used in the corresponding
dark-field image (b) to obtain the photoelastic signal at disk contacts, and
subsequent analysis is employed to measure the force per disk.
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3. Results

3.1 Packing fraction
The calculated results for the packing fraction at each

tapping number τ are shown in Fig. 6, where � ¼ 0 represents
the initial configuration. The experimental data for �ð�Þ are fit
with the function �ð�Þ ¼ �0 þ A expð��=�0Þ, where �0, A,

and �0 are fit parameters. The fit parameter values for this
study were found to be �0 ¼ 0:79, A ¼ �1:39 � 10�2, and
�0 ¼ 2:27. As a result, Fig. 6 reveals that the packing fraction
exponentially approaches a final steady-state packing frac-
tion, in agreement with the previous results reported by Bandi
et al.15) Figure 6 shows the mean over nine experimental
runs, with the error bars being their standard error.

3.2 Force per disk
The force on each disk in the granular pack was measured

by the method described in Sects. 2.3.2 and 2.3.3. Figure 7
shows the cumulative number distribution of the force per
disk at each tapping number τ in the granular pack. The range
of the force per disk Fd in Fig. 7 is wider than the calibration
range [Fig. 4(c)]. However, the calibration is performed
under 1D diametral compression, i.e., the coordination
number is 2 in the calibration. In the granular pack, on the
other hand, the average coordination number is almost 4.
Thus, the force applied to each disk can be approximately 2
times greater than that in the calibration. Thus, the force
magnitude of each contact point in the granular pack is

(a) (b)

(c)

Fig. 4. (Color online) Calibration method using a vertical 1D chain of
photoelastic disks. (a) Bright- and (b) dark-field images of the vertical 1D
chain. Analysis of the 1D chain images using algorithms explained in
Sect. 2.3.2 provided the values of hG2i. (c) The force per disk estimated
from the gravitational forcing Fc was then used to relate Fc and hG2i for both
large (solid red circles) and small (solid blue triangles) disks. Solid lines
through the calibration data are quadratic fits, which were used in the
experimental measurement of the force per disk Fd.

(a) (b) (c)

Fig. 5. (Color online) Method of stress chain thinning and definition of stress chain segment length. A thinned stress chain (c) is obtained by binarizing the
original image [(a)→ (b)] and thinning it [(b)→ (c)]. A stress chain segment length is defined by the linear distance between intersections or end points in the
thinned stress chain image.

φ

τ
Fig. 6. Variation of packing fraction with manual tapping. The packing
fraction increases with each manual tapping and approaches the steady state
(�0 ¼ 0:79). The mean value of nine runs is shown, and the error bars
represent the standard error of nine runs. The dotted curve is the fit,
�ð�Þ ¼ �0 þ A expð��=�0Þ, where �0 ¼ 0:79, A ¼ �1:39 � 10�2, and �0 ¼
2:27 are the values obtained for the fit parameters.
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almost within the calibration range. The distribution can be
approximated by the exponential form:

NcumðFdÞ ¼ AF exp � Fd

F0

� �
; ð1Þ

where NcumðFdÞ is the number of disks on which the applied
force is greater than or equal to Fd. AF and F0 are fit
parameters with F0 having the dimension of force. Figure 7
is obtained from the mean value of nine identical exper-
imental runs, and exhibits a roughly exponential distribution
with almost constant slopes across all values of τ for the
initial as well as the final compact state. The fit parameters
were found to be AF ¼ 1:53 � 103 and F0 ¼ 9:06 � 10�2N
at the initial configuration (� ¼ 0). This result suggests that
the functional form of the cumulative force distribution itself
is invariant to the compaction under manual tapping as it
yields the same slope for the exponential tail for all τ values.
This result is qualitatively consistent with the previous study
in which Liu et al. and Coppersmith et al. measured the
cumulative distribution of force exerted by a three-dimen-
sional (3D) granular pack on the container walls and showed
that it follows an exponential distribution.21,22) Note that,
however, the coefficient AF does vary with τ, as shown in
Fig. 8.

3.3 Force chain segment length
Recent studies have analyzed force chain segment lengths

under pure shear and isotropic compression and found that
they are exponentially distributed:23–25)

NcumðlÞ ¼ Al exp � l

l0

� �
; ð2Þ

where NcumðlÞ is the number of segments of length greater
than or equal to l. Al and l0 are fit parameters and l0 has the
dimension of length. The unit of length used is the mean disk
diameter D ¼ ð0:015 þ 0:01Þ=2 ¼ 0:0125m.

In agreement with previous works, the cumulative number
distribution for the force chain segment length in this study
is also found to be exponentially distributed (Fig. 9) with the
functional form of Eq. (2). The fit parameters are Al ¼
9:45 � 102 and l0 ¼ 0:82D ’ 0:01m at the initial config-

uration (� ¼ 0). The characteristic length l0 corresponding
to the diameter of the small disk is derived from a mere
reflection of the effect on the analysis method. This fact
indicates that a segment length is meaningless for less than
the small disk size. This is natural because we consider the
force chain structure to consist of disks. This is also clearly
reflected in Fig. 9, where a steady exponential slope is
observed only for l > 1D. The slope and coefficient of the
exponential distributions are almost constant across all τ
values, rendering this distribution invariant to the manual
tapping protocol.

4. Discussion

The experimental results discussed thus far show that the
packing fraction varies with the tapping number τ through the
relationship �ð�Þ ¼ �0 þ A expð��=�0Þ and that ϕ saturates
at an asymptotic value of �0 ¼ 0:79. Additionally, the
cumulative distribution of the force per disk at each τ
was found to be exponentially distributed as NcumðFdÞ ¼
AF expð�Fd=F0Þ. In particular, whereas the characteristic
force F0 remains invariant to τ, the coefficient AF varies with

τ
Fig. 8. Variation of fit parameter AF as a function of tapping number τ. AF

increases with each manual tapping. The AF values are calculated from the
fitting using Eq. (1) with fixed F0 (¼ 0:09N). The error bars represent the
uncertainty of the fitting.

τ
τ
τ
τ
τ
τ
τ
τ
τ
τ

Fig. 9. (Color online) Cumulative number distributions of force chain
segment lengths in a log-linear scale. The force chain segment lengths are
quoted in the unit of the mean disk diameter D. The black solid line
represents the initial configuration (� ¼ 0) whereas the colored lines represent
the compacted states for various τ values. The data represent the mean of nine
experimental runs.

τ
τ
τ
τ
τ
τ
τ
τ
τ
τ

Fig. 7. (Color online) Cumulative number distributions of force per disk at
each tapping number τ in a log-linear scale. The black solid line represents
the initial configuration (� ¼ 0) whereas the colored lines represent the
compacted states for various τ values. The data represent the mean value of
nine experimental runs.
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τ (Fig. 8). On the other hand, the cumulative distribution of
the force chain segment length, which is also exponentially
distributed [NcumðlÞ ¼ Al expð�l=l0Þ], exhibits no depend-
ence on the tapping number τ (Fig. 9). This suggests that the
evolution of the packing fraction �ð�Þ leads to the increase in
the internal force within the compacted granular pack, but
does not lead to the creation of new force chain segments. On
the basis of these trends, we now explore a speculative
relationship between �ð�Þ and the total force Ftot of the
granular pack. Since ϕ is a globally averaged structural
quantity, it should be compared with the total force.

The total force Ftot is defined as Ftot ¼
Pk

i¼1 Fi, where Fi

is the force per disk on the ith disk, and the summation is
carried over all disks in the granular pack (k represents the
total number of disks), with the force threshold set at 0.1N;
forces below this threshold are not included in the
summation. The total force is measured for the initial
configuration and after each manual tap. Accordingly, we
define the normalized total force as F�

totð�Þ � Ftotð�Þ=
Ftotð� ¼ 0Þ, where Ftotð� ¼ 0Þ represents the total force of
the initial configuration. In Fig. 10, we show the normalized
total force F�

tot as a function of τ. We can confirm the
asymptotic behavior of F�

totð�Þ ¼ F�
t0 þ A�

t expð��=�t0Þ,
where F�

t0 ¼ 1:2, A�
t ¼ �0:2, and �t0 ¼ 1:67. This functional

form is similar to that for �ð�Þ. The comparison of �ð�Þ
and F�

totð�Þ reveals that �t0 ’ �0. Therefore, the ratio
½F�

totð�Þ � F�
t0�=½�ð�Þ � �0� should be approximated by

A�
t =A ¼ 14. We independently confirm that F�

totð�Þ vs �ð�Þ
scales linearly as shown in Fig. 11. The slope of this scaling
is 14 � 2, in excellent agreement with the estimated result.
This linear relationship suggests that the process of
compaction by tapping leads to the increase in the granular
internal force in a linear fashion. This linear dependence may
result from the optimal amplitude perturbation (� ’ 3{4)
representing the linear response regime of the system.
Stronger perturbations may not exhibit a similar dependence
between F�

totð�Þ and �ð�Þ. This linear relation could be
potentially useful for the estimation of the increase in the
internal force within the compacted granular pack from
packing fraction measurements for applications that involve
compaction processes.

In this study, we developed a systematic method of
analyzing a 2D granular pack comprised of photoelastic
disks. Using the developed method, granular compaction by
manual tapping was analyzed. Although an interesting
structural evolution was revealed in this study, this is still
the first step to approach granular compaction by tapping
using photoelastic disks. The result should be compared with
the case of controlled tapping using an electromagnetic
shaker. Further studies concerning this comparison are in
progress at present. The result will be published elsewhere.

5. Conclusions

In this study, the structural evolution of a 2D compacted
granular pack has been experimentally studied using
photoelastic disks. First, we developed a method of measur-
ing the packing fraction, contact forces, and force chain
segment lengths by image analysis methods. Then, the
dependences of these quantities on manual tapping were
experimentally measured. From the experimental results, the
exponentially asymptotic behavior of the packing fraction
was observed. The distributions of the applied force per disk
and force chain segment length at each τ were found to be
characterized by exponential forms. Although the former
depends on the tapping number τ, the latter does not depend
on it. The τ-dependent total force was also shown to exhibit
the asymptotic exponential behavior. The linear relationship
between these two functions (ϕ and F�

tot) was confirmed from
the measurements of F�

tot and ϕ.
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