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a b s t r a c t

Steady-state turbulence is generated in a tank of water and the trajectories of particles forming a
compressible system on the surface are tracked in time. The initial uniformly distributed floating particles
coagulate and form a fractal structure, a rare manifestation of a strange attractor observable in real space.
The surface pattern reaches a steady state in approximately 1 s. Measurements are made of the fractal
dimensions Dq(t) (q = 1 to 6) of the floating particles starting with the uniform distribution Dq(0) = 2
for Taylor Microscale Reynolds number Reλ ' 160. Focus is on the time evolution of the correlation
dimension D2(t) as the steady state is approached. This steady state is reached in several large eddy
turnover times and does so at an exponential rate.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

When studying a dynamical system in phase space, one of sev-
eral scenarios may occur. The simplest cases involve either a fixed
point or a limit cycle (periodic orbit). Themost interesting scenario
unfolds when studying dissipative systems undergoing chaotic
evolution. When a system is driven out of thermal equilibrium,
a phase point which previously would have visited all regions of
phase space with almost equal probability, now spends most of its
time in a limited region. There it develops a complex fractal topol-
ogy which is called a strange attractor [1]. Strange attractors have
been extensively studied for simple maps (e.g. the Henon map)
[2,3] as well as for real world systems [4]. Typically, the fractal be-
havior of such systems is studied in an asymptotic limit which ig-
nores the transient behavior [2]. In this paper, we show that mea-
suring a fractal dimension in the transient state is an effective way
to characterize the evolving topology of this particular system.
In this experiment we study the transient evolution of a fractal

topology in a laboratory setting, namely, the clustering of floating
particles at the surface of a turbulent fluid. If neutrally buoyant,
non-inertial particles are introduced into a turbulent flow, they
quickly distribute themselves throughout the volume of the fluid;
further stirring leaves the particle density distribution uniform.
The buoyant particles used in this experiment have a densitymuch
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less than that of the fluid onwhich theymove.Hence their behavior
is entirely different. Now, their motion is confined to the surface of
the turbulent fluid. If the spatial distribution is initially uniform,
at say, t = 0, continuous stirring of the underlying fluid evolves
this spatial distribution into string-like structures. Ultimately a
steady state is reached, at which time the floaters occupy a fractal
dimension much less than 2 [5]. This time evolution into a fractal
is a generic effect. It occurs even if the interactions between
the floaters is negligibly small. A common manifestation of this
phenomenon is the coagulation of scum on the surface of the sea,
as is often seen in an ocean harbor.
The transient evolution of the floaters is studied by uniformly

distributing the floaters at t = 0 (as discussed in Section 2.). At
times t > 0 the particles are subject to the underlying turbulent
flow until their spatial distribution reaches a steady state. To study
the floater’s fractal distribution, the spectrumof fractal dimensions
Dq(t) is measured at subsequent times t during the transient
evolution. One may argue that the generalized fractal dimensions
Dq of any system are meaningful only in the limit of the evolution
time t → ∞. However, there exist instances of strange attractors
realizable in real or configuration space (such as shear flows [6],
cement gels [7,8]) that are amenable to investigation of their
transient behavior.
It is essential to realize that the floaters in this experiment are

passively advected by the underlying flow. They are small enough
to follow the velocity field of the turbulent sea onwhich theymove,
in a plane that has coordinates x, y, z = 0. There are, of course,
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waves on the surface, and they can drive themotion of the floaters.
Separate studies have shown that the amplitude of the surface
waves is small enough to have a negligible effect on the particle
motion [9]. Though the water molecules can have a downward
velocity component at all values of the depth z, the floaters cannot
follow them. That is why they coagulate and disperse in the plane
of their motion x, y with z = 0. In this sense the floaters form a
strongly compressible system. Using the following definition of the
dimensionless compressibility,

C =

〈(⇀
∇2·

⇀
v
)2〉/〈(⇀

∇2
⇀
v
)2〉

. (1)

With this definition,Cmust lie between zero (incompressible) and
1 (potential) for an isotropic flow field. Experimentally, C is close
to 0.5 [9].
The coagulation phenomenon described above was demon-

strated and analyzed by Sommerer and Ott (S&O) [10]. The solu-
tion was rather gently stirred via a pulsing jet, its motion being
slow enough that they could measure the steady-state fractal di-
mensions of the surface particles and the two Lyapunov exponents
as well. The latter parameters, λ1 > λ2 define the rate at which
initially close particle pairs separate in time. Since the pattern be-
comes string-like in the steady state, the largest exponent λ1 is
positive, and the other one λ2 is negative. Since the total area ul-
timately occupied by the floaters decreases, λ1 + λ2 < 0. The in-
formation dimension (D1) of the fractal pattern can be related to
the dynamics of the system through the Kaplan–Yorke dimension
DKY = 1+ λ1/|λ2| [11]. For a two-dimensional system, DKY = D1.
In a separate study [8] (but with a similar experimental setup as
in [10]), the correlation dimension D2 of the floating particles was
measured, both at an initial time t ' 0 when D2 ' 2 and in the
steady state where 1 < D2 < 2. In that experiment, the correla-
tion dimension could not be measured during the transient state
because of poor scaling [8]. In the present experiment, we observe
a robust scaling of the correlation sum C2(r) during the transient
evolution, see Fig. 3, from an initial state D2(0) ' 2 to a steady-
state value D2(∞) ' 1.25.
The present experiment differs from that of S&O in that the

stirred fluid, water, could be driven into a strongly turbulent state.
The Taylor microscale Reynolds number, Reλ is approximately 160
(see Table 1). This large Reλ establishes awell defined inertial range
of the flow (see [9]). For a more thorough exploration of this type
of flow, see [9,12]. Since the experiment of S&O, there have been
several theoretical advances pertaining to clustering phenomena
in turbulent flows. These theories utilize the statistics of stretching
rates below the dissipative scaleη of turbulence (Table 1) to predict
a multi-fractal particle distribution for compressible flows [13].
The measurements made in this experiment are strictly for scales
greater than the dissipative scale η (see Section 2), where there is
currently no theoretical guidance [13,14].
Before describing the experiment in detail, it is helpful to

observe the pattern of the floaters at a sufficiently long time so
that the steady state has almost been achieved. Fig. 1 shows the
distribution of the Lagrangian particles (discussed below) at t =
0.15 s and t = 1.5 s, their spatial distribution being uniform at
t = 0. Were an image made at t = 0, the particle distribution
(shown as dots) would be uniform. The blank white spaces are due
to the finite initial seeding procedure and do not affect the results.

2. Experimental setup

The 1m×1m tank is filled with water to a height of 30 cm. The
tank is large compared to the camera’s field of view. The turbulence
is generated by a large pump connected to a network of rotating
jets in a plane 10 cm above the tank floor. See Fig. 2 for a schematic
of the experimental setup. The arrangement creates uniform tur-
bulence in the center of the tank, and also moves the source of tur-
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Fig. 1. Visualization of particles clustering from a uniform initial distribution of 105
tracer particles for Reλ = 169 at t = 0.15 s for (top) and t = 1.5 s (bottom). By
t = 1.5 s the particle distribution has reached a steady state, which occurs within
several Large Eddy Turnover Times τ0 (Table 1.).

bulent injection far from the fluid surfacewhere themeasurements
are made [9]. With this scheme, surface waves, which cannot be
avoided, do not exceed an amplitude of ∼1 mm [9]. It is neces-
sary that the surface of the tank be freshly cleaned before each set
ofmeasurements. Otherwise, amphiphiles form a continuous layer
on the surface and prevents the floaters from moving freely under
the action of the turbulence [9].
The hydrophilic particles chosen here are subject to capillary

forces which are very small compared to forces coming from the
turbulence, and do not affect the results as they do in [15,16].
The non-inertial character of the particles is minimal because the
Stokes number St is small: St = τsvrms/a ' 0.01, where a is the
particle radius, vrms is the RMS velocity of the turbulent fluid at the
free-surface, and τs is the stopping time of the particle [17].
During an experimental run, the floating particles (50 µm

diameter and specific gravity of 0.25) are constantly seeded into
the fluid from the tank floor, where they undergo turbulentmixing
as they rise due to buoyancy and are uniformly dispersed by the
time they rise to the surface. Once at the free-surface, their motion
is constrained to the two-dimensional surface plane. Their motion
is tracked via a high-speed camera (Phantom v.5) situated above
the tank. The camera field-of-view is a square area of side length
L = 9 cm. The constant particle injection is necessary to replace
particles at the surface during the experiment. The source and sink
structure at the surface fluctuates in both time and space, which
can cause particles to leave the camera’s field of view.
Instantaneous velocity fields are measured using an in-house

developed particle imaging velocimetry (PIV) program which pro-
cesses the recorded images of the floaters. The constant injection
of particles ensures that surface sources and sinks receive an ade-
quate coverage of particles on the surface. The local particle density
at the surface determines the average spacing of the velocity vector
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Table 1
Turbulent parameters measured at the surface. Measurements are made at several values of the Reλ with an average Reλ ' 160. The parameters listed are averages, with
deviations less than 10%.

Parameter Symbol used in text Measured value

Taylor microscale λ (cm) λ =

√
v2rms

〈(∂vx/∂x)2〉
0.47

Taylor Reλ Reλ = vrmsλ
ν

160

Integral scale l0 (cm) l0 =
∫
dr 〈v‖(x+r)v‖(x)〉

〈(v‖(x))2〉
1.42

Large Eddy Turnover Time (LETT) τ0 (s) τ0 =
l0
vrms

0.43

Dissipation rate εdiss (cm2/s3) εdiss = 10ν〈( ∂vx∂x )
2
〉 6.05

Kolmogorov scale η (cm) η =
(
ν3

ε

)1/4
0.02

RMS velocity vrms(cm/s) vrms =
√
〈v2〉 − 〈v〉2 3.3

Compressibility C C = 〈(
⇀
∇ 2 ·

⇀
v )2〉

〈(
⇀
∇ 2

⇀
v )2〉
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Fig. 2. Schematic of the top-view (top panel) and side-view (bottom panel) of the
experimental setup. 36 rotating capped jets are placed horizontally on the tank floor
(shown as randomly oriented Z-shaped patterns) that pumpwater into the tank re-
circulated by an 8 hp pump. The central region of thewater surface is illuminated by
a laser-sheet. A high-speed digital camera suspended vertically above this central
region captures images of the light scattered by buoyant particles (50 µm hollow-
glass spheres of specific gravity 0.25).

fields produced by the PIV program. The resulting velocity vectors
are spaced (on average) by δx = 2.5η over both sources and sinks.
This vector grid spacing is important for the Lagrangian particle
evolution scheme, which is discussed below. The camera’s height
above the water surface was chosen so that a pixel size is roughly
0.1 mm, comparable to the dissipative scale of the turbulence.
Themeasured velocity fieldwas then used to solve the equation
of motion for Lagrangian particles:

dxi
dt
= v(xi(t), t), (2)

where v(xi, t) is the velocity field and xi = (xi, yi) are the
individual particle positions. To achieve accurate results for the
Lagrangian particle evolution, the vector fields used in Eq. (2) were
interpolated from the experimentally determined velocity vectors
via a bi-cubic interpolation scheme developed for numerical
simulations, as discussed in [18] and implemented in [9]. This
scheme uses the smooth flow between grid points separated by
length scales comparable to η to interpolate the velocity field
between measured velocity grid points. To use this scheme it is
necessary for the measured velocity grid spacing to satisfy the
criterion δx < πη, where δx is the above mentioned average
measured velocity grid spacing. We have tested to ensure that the
results do not depend on the velocity grid spacing by varying the
spacing from δx = 2.5η to δx = 4η.
The Lagrangian particle tracks evolved by Eq. (2) are then used

for the measurements presented in this work. This is the method
used to achieve a uniform distribution of floaters at t = 0. Visual-
ization of these Lagrangian tracers can be seen in Fig. 1. The exper-
imental setup is discussed in more detail in [9]. Data were taken
for several values of Reλ ' 150–170 with an average Reλ ' 160.
Since themeasurements showno systematic variationwith theReλ
over this range, each experimental run was averaged to decrease
measurement errors. Turbulent parameters measured at the sur-
face are listed in Table 1. All of the statistics presented belowwere
obtained by evolving ∼105 Lagrangian particles per frame. Tests
were performed to ensure that the number of tracers provided ad-
equate statistics to calculate Dq(t). The initial homogeneous seed-
ing of particles was varied from 105 to 4×105 and the results were
insensitive to this variation. Since computation time goes roughly
as N2 because of Eq. (4), no more than 105 tracers were used.

3. Results and analysis

We investigate the inhomogeneous particle distributions by
measuring their time-evolving fractal dimensions. Fractal dimen-
sions are mathematical representations of complex patterns and
provide measures of spatial (or temporal) dependence at a variety
of scales. For any q, the spectrum of fractal dimensions is [19]:

Dq = lim
r→0

1
q− 1

d log(Cq(r))
d log r

(3)

where the correlation functions Cq(r) are defined:

Cq(r) =
1
N

N∑
i

[
1

N − 1

N−1∑
j6=i

θ(r − rij)

]q−1
. (4)
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Fig. 3. Correlation functions C2(r) averaged over several Reλ ' 160 for various
times in the experiment. The interval of r that exhibits scale-free behavior is r/η '
102 to 100.5 . The inset shows the valueD2 calculated from themain figure. Note that
these scales are in the inertial range of the flow (Table 1).

For q = 2, the quantity contained inside the brackets in Eq. (4) is
the probability of two randomly chosen points (here our passive
tracers) being within a distance r of one another. For q ≥ 3, the
bracketed function is the number of q-tuplets of points (particles)
whose pairwise distance is less than r . Here N are the total num-
ber of tracer particles (forced to be constant), θ is the heaviside
step function, and rij is the distance between particle i and j. This
algorithm for determining the spectrum of fractal dimensions was
given by Hentschel and Procaccia [20].
To calculateDq, the log of the correlation sum (Eq. (4)) is plotted

versus the log of r . The range of r over which the plot is a straight
line is the scale-free (or scaling) region. The slope of the line
d log(Cq(r))/d log(r) is the value of Dq. The abscissa is r in units
of the dissipative scale η (Table 1).
At t = 0 the particles are uniformly distributed, Dq(0) = 2.

Fig. 3 is a plot of log(C2(r)) versus log(r) for t = 0 and subsequent
times. The scaling range is seen to span the interval 100.5 < r/η <
102. The ratio of the integral scale l0 to the dissipative scale η is
l0/η ' 70. The initial homogeneous particle separation is roughly
η. At t = 0, D2(t = 0) ' 2 for 3 < r/η < 70. For scales r/η < 2,
D2(t = 0) ' 0, indicating the point-like nature of the Lagrangian
tracer particles at scales less than initial tracer spacings. Thus, to
ensure that the Dq are defined such that Dq > 0 for all times t , the
only measurements presented here are for r/η > 2.
Fig. 4 shows measurements of Dq for Reλ ' 160 for a range

of q = 1 to 6 at various times. The measurements at t = 1.5 s
are in the steady state (discussed below). The results indicate a
multi-fractal distribution over what is usually considered to be
the inertial range of the flow. However, other experiments [21,22]
observe that the transition from the inertial to dissipative range
occurs at spatial scales greater than η. Because of this, it is
difficult to label the measurements here as being strictly inertial
or dissipative. While the theory in [13] predicts a multi-fractal
particle distribution for compressible flows below the dissipative
scale, no theory exists for the inertial range. The results in thiswork
do agree qualitatively with the existence of inertial-range scaling
seen in a numerical simulation [23]. The following analysis of the
time evolution of the dimensions Dq will focus on the so-called
correlation dimension D2.
The experimentwas performed at several Reλ ' 150–170, with

an average Reλ ' 160. From each of these experiments, 17 time
traces of the various Dq(t) were measured starting with an initial
homogeneous distribution. These individual time traces were then
used to produce an ensemble measurement of Dq(t), which is
analyzed subsequently. The total time spanned by the ensemble
of experiments is approximately 25 s, or roughly 60 LETT’s. For
t > 1.5, all of the Dq measured fluctuate around a steady-state
limiting value Dq(∞). For D2(t), D2(∞) = 1.25. Fig. 4 shows
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Fig. 4. Range of values Dq measured for Reλ = 169 for various times in the
experiment. These results indicate amulti-fractal distribution of theparticles for the
inertial range of the flow after the particle distribution evolves fromahomogeneous
distribution at t = 0 s.
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Fig. 5. D2(t) averaged over several Reλ ' 160. The result is an exponential decay
of D2(t) from D2(0) = 2 to roughly 1.25 in approximately 1.5 s. The solid line is a
best fit to the data. The inset shows the decay exponent γ (q) (discussed in text) as
it varies with q.

an example of Dq(t) for Reλ = 169 measured at various times
t < 1.5 s, after which the dimensions saturate to values of Dq(∞).
These values Dq(∞) are approximately those at Dq(t = 1.5 s). The
error bars reported in Fig. 4 are due to the error in the fits used
to obtain the Dq(t). Similar errors are found from the statistical
ensemble averaging of the Dq(t).
Our main result appears in Fig. 5. This figure shows that D2(t)

(ensemble averaged) decays at an exponential rate fromD2(0) = 2
to D2(∞) : D2(t)−D2(∞) ∝ exp(−γ t), where γ = 2.4± 0.1 Hz.
The decay time τ = 1/γ is 0.4 s, which is approximately one
large eddy turnover time τ0 (Table 1). This is the typical time for
the largest ‘‘eddies’’ to significantly distort in a turbulent flow [24].
Several other Dq(t) also experience an exponential decay from
an initially homogeneous state Dq(0) = 2 to their steady-state
limiting value Dq(∞). The inset of Fig. 5 shows the exponent γ (q)
characterizing the exponential decay. One can see that γ (q) is
approximately independent of q for q = 1, . . . , 3. However, for
q > 3 the error in the measurement makes it difficult to predict
that for large q,Dq(t)will decay exponentially. Itmay also beworth
noting that the value of γ (q = 1, . . . , 3) is close to the value of
the smallest Lyapunov exponent (but the largest in magnitude)
measured in [25] (λ2 ' −2 Hz). It remains to understand why this
decay has exponential form.

4. Summary

A compressible system of particles in free-surface turbulence
represents an instance of a chaotic attractor in real space.We study
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the time evolution of the low-order fractal dimensions Dq for an
ensemble of particles floating on a turbulent tank of water with
the initial value of Dq = 2 (q = 1, . . . , 6). The system evolves
in a time of the order of the lifetime of the largest eddies, to a
steady state where the measured Dq(t) approaches a value that
is slightly greater than 1, implying the formation of string-like
structures. The correlation dimension D2(t) evolves exponentially
as the steady state is approached. It is not possible, so far, to
deduce these observations from the Navier–Stokes equations in
the inertial range of the compressible flow studied here.
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