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PACS. 47.27.-i – Turbulent flows.
PACS. 47.27.ed – Dynamical systems approaches.
PACS. 47.52.+j – Chaos in fluid dynamics.

Abstract. – The rate of change of entropy Ṡ is measured for a system of particles floating on
the surface of a fluid maintained in a turbulent steady state. The resulting coagulation of the
floaters allows one to relate Ṡ to the the velocity divergence and to the Lyapunov exponents
characterizing the behavior of this system. The quantities measured from experiments and
simulations are found to agree well with the theoretical predictions.

Introduction. – It is common to probe the velocity field of a turbulent fluid by measuring
velocity differences or correlation functions across various spatial or temporal scales. Much
is also learned from the probability density functions themselves. Here the dynamics of the
flow is investigated by measuring the system’s rate of entropy change. In a sense that will be
elaborated upon, the entropy rate measured here is zero unless the flow is compressible. It is
not required, however, that the flow speeds be very large. Indeed the present measurements
are made at only moderate Reynolds number [1].

The entropy rate measurements are made by recording the inhomogeneous distribution
of particles that float on the surface of a strongly turbulent tank of water [2]. The velocity
of these floaters is completely controlled by the turbulent velocity field beneath them. One
fully expects that this three-dimensional (3D) flow is governed by the (incompressible) Navier-
Stokes equation (NSE).

The entropy S(t) is defined in terms of the floater concentration at the fluid’s surface.
From measurements of the velocity and floater concentration fields, one extracts the entropy
rate dS/dt ≡ Ṡ, at the surface. By photographically tracking the motion of floaters, Ṡ is
measured under transient conditions and after the system has reached a steady state. In
interpreting the measurements, it is assumed that the flow underlying the dynamics of the
Lagrangian tracers follow the streamlines (i.e. the inertial effects can be neglected). If the
flow is maximally chaotic and therefore admits SRB (Sinai-Ruelle-Bowen) statistics [1], Ṡ is
equal to the sum of the Lyapunov exponents characterizing the underlying flow.
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Fig. 1 – A system of fictitious (surrogate) particles is introduced on the experimental velocity fields
at t = 0. The distribution of particles is homogeneous to start with. However, the particles quickly
flee regions of fluid up-wellings and cluster into thin ribbon-like structures around fluid down-wellings
as time progresses. The evolution of clusters is shown for four snapshots in time as they evolve
from a nearly homogeneous distribution at t = 30ms towards an inhomogeneous distribution through
t = 150ms and 300ms. The experiment is almost over at t = 600ms by which time particles have
almost completely clustered into ribbon-like structures. The figure also appears in ref. [2], where the
compressible effects are discussed in further detail.

Fortunately there exists a direct numerical simulation of the NSE that yields these ex-
ponents and hence their sum. Thus the predictions, based on chaos theory, can be directly
confronted with simulations having as a starting point, the NSE itself. To our knowledge,
these are the first measurements of the rate of entropy change for a many-body system driven
far from thermal equilibrium. Other recent studies [3,4] give further evidence that our under-
standing of non-equilibrium dynamical processes may be illuminated by invoking ideas usually
associated with equilibrium statistical mechanics and critical phenomena.

The floaters sample the velocity field at the surface of water, which is incompressible. For
them an initially uniformly distributed array of particles will subsequently tend to cluster
under the influence of the underlying turbulent fluid motion, as shown in fig. 1, thus reducing
the total entropy of the floaters, defined here as

S(t) = −
∫

dr n(r, t) ln n(r, t), (1)

where n(r, t) is the local concentration of particles on the surface. The integral is over an
area spanned by an overhead camera that records the motion of floaters. The dimensions of
the water tank are large compared to the largest scales of turbulent flow. To understand the
statistical mechanics of floaters, one need not be concerned with details of the turbulent flow
that drives them [2,5].

Falkovich and Fouxon [6] (FF) have shown that the entropy production rate Ṡ of com-
pressible systems, like the floating particles in this experiment, is nonzero. The floaters “live”
on the surface and thus have a two-dimensional velocity divergence ω(r, t) ≡ �∇2 ·�v(r, t). The
fluid, being incompressible everywhere, including the surface, tracer particles (specific gravity
0.25) obey the equation �∇2 · �v = ∂xvx + ∂yvy = −∂zvz �= 0. The finite compressibility of the
floating particle system is the origin of the nonzero value of Ṡ.
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The entropy rate can be written as the sum of two terms [6]:

Ṡ =
∫

A

dr n(r, t)ω(r, t) +
∫

B

n(r, t) ln n(r, t)v · dS. (2)

The first term is an integral over the area (area term) spanned by a camera which records
the motion of floaters. The area term will henceforth be referred to as ṠA. The second term
is a line integral around the periphery (boundary term). It takes into account particles that
escape from the camera’s field of view. Equation (2) is derived from eq. (1) by applying the
condition for mass conservation which translates to conservation of particles in this experiment
(∂tn(r, t) + ∇2 · (n(r, t)v(r, t)) = 0). FF assume that the boundary term is zero and work
exclusively with the area term. Under the assumption that the floaters admit SRB statistics,
they show that the first term on the right is the integral of the temporal correlation function
of the Lagrangian velocity divergence with a negative prefactor,

ṠA = −
∫

dτ 〈ω(r, t)ω(r, t + τ)〉. (3)

Here r is the starting point of the trajectories, and 〈...〉 represent an average over both t
and r. This correlation function holds only if the points r are uniformly distributed in space
at the initial time t. FF further note that under the assumption that the system follows SRB
distribution, ṠA = λ1+λ2, where the Lyapunov exponents λ1 and λ2 characterize the system’s
chaotic evolution with the convention that λ1 > λ2. Reported here are measurements of both
the area and boundary term contributions to Ṡ, a quantity that becomes time independent
after an initial transient period.

One can define a dimensionless compressibility C = 〈(�∇2·�v)2〉
〈(|�∇2�v|)2〉 [2], which lies between 0 and

1 for an isotropic system. Previous experiments and numerical studies [2] have consistently
reported C = 0.5 at the surface, thus making the system of floaters a strongly compressible one.

Experiment. – The experimental system is a tank of water 1 m×1 m in lateral dimensions,
filled to a depth of 30 cm and maintained in a turbulent steady state. The experimental setup
is discussed in detail in [2]. Turbulence is generated by an 8 hp pump that circulates water
in the tank via an array of 36 rotating capped jets situated at the tank floor. The points of
turbulent injection are therefore far removed from the surface where measurements are made.
The injection scheme was chosen to minimize the amplitude of waves on the surface [7]. Hollow
glass spheres of mean diameter 50 µm and specific gravity 0.25 follow the local surface flow.
A beam from a diode-pumped laser (5.5 W) is passed through a cylindrical lens to generate
a sheet of light that illuminates the surface. Light scattered by the particles is captured
by a high-speed camera (Phantom v5.0) that records particle positions and velocities at 100
frames per second. Steady-state flow measurements are achieved by constantly seeding floaters
from the bottom of the tank to compensate for those that are lost from the camera’s field
of view. The computer-stored record is broken up into a series of images that are fed into a
particle tracking program in consecutive pairs to obtain the experimental steady-state flow
velocity fields. A total of 2040 instantaneous velocity fields spanning a duration of 20 s are
obtained. There are on the average 25000 velocity vectors in each velocity field, providing
reliable spatial resolution over a square area of side length L = 9.3 cm. Parameters that
characterize turbulence on the surface are listed in table I.

Analysis. – For the analysis discussed below, the experimentally obtained velocity fields
are seeded with fictitious (surrogate) particles via computer programming. At t = 0, the
1024 × 1024 pixel grid of the velocity field is decorated with a uniform array of surrogate
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Table I – Parameters of compressible turbulence measured at the surface.

Parameter Expression Measured value

Taylor microscale λ (cm)

√
v2

rms
〈(∂vx/∂x)2〉 0.3

Reλ
vrmsλ

ν
93

Integral scale l0 (cm)
∫
dr

〈v||(x+r)v||(x)〉
〈(v||(x))2〉 1.2

Dissipation rate εdiss (cm2/s3) 10ν〈( ∂vx
∂x

)2〉 10.7

Kolmogorov scale η (cm) η = ( ν3

ε
)1/4 0.02

Large eddy turnover Time τl0 (s) τl0 = l0
vrms

0.54

RMS velocity vrms (cm/s) vrms =
√

〈v2
||〉 − 〈v||〉2 2.6

particles 6 pixels apart, providing 1702 = 28900 surrogate particles. Evolution of this initially
uniform particle distribution is dictated by the experimentally obtained velocity fields. The
particles are tracked by the program instant by instant in the Lagrangian frame. Though
some particles leave the field of view during the evolution time, they are tracked as long as
they remain in the field of view. Essential to the theory of FF is the requirement that the
number of particles in the system be conserved. Hence for every surrogate particle that leaves
the field of view, a new particle is introduced at a random spatial point within it, thereby
representing a new Lagrangian trajectory.

The focus of the experiments is on the rate of entropy production at times t large compared
to the turnover time of the largest eddies, estimated to be 0.54 s. The 20 s time-record is broken
up into 20 time-uncorrelated data sets of 1 s duration. The surrogate particles are tracked and
the two terms of eq. (2) are measured for each data set and averaged over the 20 sets. Figure 1
shows the time evolution of one of these sets. Surrogate particles are used for entropy rate
measurements since they allow an initial periodic placement which is not possible with real
particles. In addition, the surrogates also permit particle tracking in the Lagrangian frame of
reference. Lagrangian tracking of real particles is beyond the experimental capability of the
current scheme.

Discussion. – Before considering the two terms in eq. (2), it is of interest to examine
the time dependence of the entropy itself. Each instantaneous snapshot is divided into two-
dimensional bins (cells) of side length 8 pixels. The particle concentration ni(t) is the number
of particles in the i-th cell divided by the total number of particles in the field of view at
time t. The local entropy is calculated for each cell i and the total instantaneous entropy as
expressed in eq. (1) is obtained from an average over all cells S(t) = −∑N

i=1 ni(t) ln ni(t) in
a given snapshot. Here N is the total number of cells in the field of view.

Figure 2 shows the time evolution of S(t) over an interval of 1 s. The curve is an ensemble
average of the 20 data sets measured at each instant of time t. Observe that S(t) from eq. (1)
decreases monotonically through this time interval, implying an increase in particle cluster-
ing. This accords with the visual observations of clustering tracked over 0.6 s in fig. 1. The
ensemble of S(t) measurements is not large enough to completely average out its temporal
fluctuations, making it impossible to extract its derivative. That function is best obtained
using eqs. (2) and (3).

The velocity divergence field ω(r, t) is obtained by taking the component-wise spatial
derivative of the velocity fields at each instant. With the simultaneous measurement of local
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Fig. 2 – Time trace of the entropy S(t). The angular brackets around S(t) denote an ensemble average
over the 20 time-uncorrelated sets. This quantity shows a monotonic decrease in time arising from
the clustering of particles at the surface as observed in fig. 1.

particle density n(r, t), one has all the information needed to measure the integrands in
eq. (2). This spatial and temporal record of velocity divergence and particle concentrations
taken together provide the area term of eq. (2). The boundary term is obtained from particle
concentrations at the periphery as they leave the field of view. This information about the
concentration, when coupled with the velocity component perpendicular to the periphery,
provides the boundary term.

Figure 3 shows both the area term (open circles) and the boundary term (open squares)
of Ṡ in units of s−1. These two curves are the primary results of this study. It is seen from

Fig. 3 – The production rate of entropy (Ṡ) in eq. (2). The area term (red on-line circles) and
boundary term (blue on-line squares) in eq. (2) reach steady state (0.2 s) within a fraction of the large
eddy turnover time of turbulence (0.54 s).
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Fig. 4 – Temporal correlation of the Lagrangian velocity divergence ω(r, t) = �∇2 · v(r, t) vs. time
τ . It was calculated individually for velocity divergence time traces of 28900 Lagrangian trajectories
that formed the initial uniform distribution, and averaged over to obtain the plot in the figure.

fig. 3 that the dominant contribution comes from the area term, on which FF focus. After
the system has reached a steady state (in roughly 0.2 s), the area and boundary terms reach
values of −1.82 ± 0.07 Hz, and −0.60 ± 0.7 Hz, respectively. It is apparent that the boundary
term is hardly distinguishable from zero though its uncertainty is appreciable. All quoted
uncertainties are statistical in origin and hence represent lower bounds on the true values.

The data in fig. 3 are robust to changes in the cell size (mc) provided that change is kept
within a reasonable range. The determination of velocity divergence requires calculation of
spatial derivatives which cannot be reliably computed below mc = 8 pixels. This sets the
lower bound on mc for this experiment. The mean values of Ṡ evaluated at mc = 8 pixels and
mc = 16 pixels were within a standard deviation. On the other hand for mc = 32 pixels, the
mean Ṡ dropped measurably. Normally the velocity divergence should be computed at the
smallest scales of turbulence, namely the Kolmogorov scale η. This scale cannot be resolved
in this experiment due to limitations of camera resolution. A systematic error is expected
since the cell size of mc = 8 pixels strictly falls in the inertial range of turbulence. It is
therefore surprising that the measured values of Ṡ are robust for mc = 8 and 16 despite spatial
derivatives being computed at scales larger than the Kolmogorov scale η. Also analyzed was
the dependence of Ṡ on change in area. No significant change in the area term was observed
when the field of view was reduced by a factor of 2.

The steady-state value of the area term cannot be predicted from general considerations.
However, if the system is highly chaotic, in the sense that it obeys SRB statistics [6, 8, 9],
then the area term in eq. (2) can also be ascertained from eq. (3). The measured correlation
function of Lagrangian velocity divergence (eq. (3)) is shown in fig. 4. It was extracted from an
average over the 28900 Lagrangian trajectories that formed the initial uniform distribution of
surrogate particles at time t = 0 s. This uniform distribution ensures an equal weighting over
all sources (fluid up-wellings) and sinks (fluid down-wellings) of the flow field. The area under
this correlation function with a negative prefactor was calculated to be −2.4 ± 0.02 Hz. It is
likely that the source of the slightly higher value obtained from the correlation function comes
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from the boundary contribution which yields −0.6 ± 0.7 Hz. It cannot be ruled out, however,
that the discrepancy is controlled by the experimental impossibility of making measurements
down to the dissipative scale η. Whatever the reason, the two values of this entropy rate differ
from the average value by less than 15%.

The two Lyapunov exponents have not been measured in this experiment, but the ribbon-
like clusters in fig. 1 suggest one exponent is negative and the other positive. For SRB
statistics, one expects smooth behavior of the particle density along the unstable direction
(where λ1 > 0) and a fractal distribution of n(r) along the transverse direction corresponding
to λ2 < 0. These two exponents have been extracted from a computer simulation of clustering
on the surface of a turbulent fluid, the starting point being the NSE [1]. In that study, the
parameters were close to those of the present experiments. This study yields λ1 = +0.3 Hz
and λ2 = −2.0 Hz. The exponents have opposite sign, as expected. Their sum, −1.7 Hz,
agrees well with the measured value for the area term, ṠA = −1.82 ± 0.07 Hz.

Summary. – In summary, an experiment has been described in which the the rate of
entropy change has been measured for a compressible system of particles that float on a tur-
bulent fluid. In this steady-state experiment it is observed that Ṡ reaches a time-independent
value in a fraction of the lifetime of the largest eddies in the underlying flow. Also measured
is the functional form of the Lagrangian velocity divergence correlation function, for which no
theoretical prediction exists. Assuming the density distribution of the floaters admits SRB
statistics, Ṡ should be equal to the sum of two Lyapunov exponents, which have been mea-
sured in a computer simulation carried under conditions very similar to those of the present
experiment. It is hoped that the statistical approach to turbulence taken by Falkovich and
Fouxon and others [3, 4] will complement the more traditional hydrodynamic approach.
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